# Diffusersのコードをベースとした sd_xl_baseのU-Net # state dictの形式をSDXLに合わせてある """ target: sgm.modules.diffusionmodules.openaimodel.UNetModel params: adm_in_channels: 2816 num_classes: sequential use_checkpoint: True in_channels: 4 out_channels: 4 model_channels: 320 attention_resolutions: [4, 2] num_res_blocks: 2 channel_mult: [1, 2, 4] num_head_channels: 64 use_spatial_transformer: True use_linear_in_transformer: True transformer_depth: [1, 2, 10] # note: the first is unused (due to attn_res starting at 2) 32, 16, 8 --> 64, 32, 16 context_dim: 2048 spatial_transformer_attn_type: softmax-xformers legacy: False """ import math from types import SimpleNamespace from typing import Any, Optional import torch import torch.utils.checkpoint from torch import nn from torch.nn import functional as F from einops import rearrange IN_CHANNELS: int = 4 OUT_CHANNELS: int = 4 ADM_IN_CHANNELS: int = 2816 CONTEXT_DIM: int = 2048 MODEL_CHANNELS: int = 320 TIME_EMBED_DIM = 320 * 4 USE_REENTRANT = True # region memory efficient attention # FlashAttentionを使うCrossAttention # based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py # LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE # constants EPSILON = 1e-6 # helper functions def exists(val): return val is not None def default(val, d): return val if exists(val) else d # flash attention forwards and backwards # https://arxiv.org/abs/2205.14135 class FlashAttentionFunction(torch.autograd.Function): @staticmethod @torch.no_grad() def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size): """Algorithm 2 in the paper""" device = q.device dtype = q.dtype max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) o = torch.zeros_like(q) all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device) all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device) scale = q.shape[-1] ** -0.5 if not exists(mask): mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size) else: mask = rearrange(mask, "b n -> b 1 1 n") mask = mask.split(q_bucket_size, dim=-1) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), mask, all_row_sums.split(q_bucket_size, dim=-2), all_row_maxes.split(q_bucket_size, dim=-2), ) for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale if exists(row_mask): attn_weights.masked_fill_(~row_mask, max_neg_value) if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu( q_start_index - k_start_index + 1 ) attn_weights.masked_fill_(causal_mask, max_neg_value) block_row_maxes = attn_weights.amax(dim=-1, keepdims=True) attn_weights -= block_row_maxes exp_weights = torch.exp(attn_weights) if exists(row_mask): exp_weights.masked_fill_(~row_mask, 0.0) block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON) new_row_maxes = torch.maximum(block_row_maxes, row_maxes) exp_values = torch.einsum("... i j, ... j d -> ... i d", exp_weights, vc) exp_row_max_diff = torch.exp(row_maxes - new_row_maxes) exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes) new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values) row_maxes.copy_(new_row_maxes) row_sums.copy_(new_row_sums) ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size) ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes) return o @staticmethod @torch.no_grad() def backward(ctx, do): """Algorithm 4 in the paper""" causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args q, k, v, o, l, m = ctx.saved_tensors device = q.device max_neg_value = -torch.finfo(q.dtype).max qk_len_diff = max(k.shape[-2] - q.shape[-2], 0) dq = torch.zeros_like(q) dk = torch.zeros_like(k) dv = torch.zeros_like(v) row_splits = zip( q.split(q_bucket_size, dim=-2), o.split(q_bucket_size, dim=-2), do.split(q_bucket_size, dim=-2), mask, l.split(q_bucket_size, dim=-2), m.split(q_bucket_size, dim=-2), dq.split(q_bucket_size, dim=-2), ) for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits): q_start_index = ind * q_bucket_size - qk_len_diff col_splits = zip( k.split(k_bucket_size, dim=-2), v.split(k_bucket_size, dim=-2), dk.split(k_bucket_size, dim=-2), dv.split(k_bucket_size, dim=-2), ) for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits): k_start_index = k_ind * k_bucket_size attn_weights = torch.einsum("... i d, ... j d -> ... i j", qc, kc) * scale if causal and q_start_index < (k_start_index + k_bucket_size - 1): causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu( q_start_index - k_start_index + 1 ) attn_weights.masked_fill_(causal_mask, max_neg_value) exp_attn_weights = torch.exp(attn_weights - mc) if exists(row_mask): exp_attn_weights.masked_fill_(~row_mask, 0.0) p = exp_attn_weights / lc dv_chunk = torch.einsum("... i j, ... i d -> ... j d", p, doc) dp = torch.einsum("... i d, ... j d -> ... i j", doc, vc) D = (doc * oc).sum(dim=-1, keepdims=True) ds = p * scale * (dp - D) dq_chunk = torch.einsum("... i j, ... j d -> ... i d", ds, kc) dk_chunk = torch.einsum("... i j, ... i d -> ... j d", ds, qc) dqc.add_(dq_chunk) dkc.add_(dk_chunk) dvc.add_(dv_chunk) return dq, dk, dv, None, None, None, None # endregion def get_parameter_dtype(parameter: torch.nn.Module): return next(parameter.parameters()).dtype def get_parameter_device(parameter: torch.nn.Module): return next(parameter.parameters()).device def get_timestep_embedding( timesteps: torch.Tensor, embedding_dim: int, downscale_freq_shift: float = 1, scale: float = 1, max_period: int = 10000, ): """ This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param embedding_dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array" half_dim = embedding_dim // 2 exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device) exponent = exponent / (half_dim - downscale_freq_shift) emb = torch.exp(exponent) emb = timesteps[:, None].float() * emb[None, :] # scale embeddings emb = scale * emb # concat sine and cosine embeddings: flipped from Diffusers original ver because always flip_sin_to_cos=True emb = torch.cat([torch.cos(emb), torch.sin(emb)], dim=-1) # zero pad if embedding_dim % 2 == 1: emb = torch.nn.functional.pad(emb, (0, 1, 0, 0)) return emb # Deep Shrink: We do not common this function, because minimize dependencies. def resize_like(x, target, mode="bicubic", align_corners=False): org_dtype = x.dtype if org_dtype == torch.bfloat16: x = x.to(torch.float32) if x.shape[-2:] != target.shape[-2:]: if mode == "nearest": x = F.interpolate(x, size=target.shape[-2:], mode=mode) else: x = F.interpolate(x, size=target.shape[-2:], mode=mode, align_corners=align_corners) if org_dtype == torch.bfloat16: x = x.to(org_dtype) return x class GroupNorm32(nn.GroupNorm): def forward(self, x): if self.weight.dtype != torch.float32: return super().forward(x) return super().forward(x.float()).type(x.dtype) class ResnetBlock2D(nn.Module): def __init__( self, in_channels, out_channels, ): super().__init__() self.in_channels = in_channels self.out_channels = out_channels self.in_layers = nn.Sequential( GroupNorm32(32, in_channels), nn.SiLU(), nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1), ) self.emb_layers = nn.Sequential(nn.SiLU(), nn.Linear(TIME_EMBED_DIM, out_channels)) self.out_layers = nn.Sequential( GroupNorm32(32, out_channels), nn.SiLU(), nn.Identity(), # to make state_dict compatible with original model nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1), ) if in_channels != out_channels: self.skip_connection = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) else: self.skip_connection = nn.Identity() self.gradient_checkpointing = False def forward_body(self, x, emb): h = self.in_layers(x) emb_out = self.emb_layers(emb).type(h.dtype) h = h + emb_out[:, :, None, None] h = self.out_layers(h) x = self.skip_connection(x) return x + h def forward(self, x, emb): if self.training and self.gradient_checkpointing: # print("ResnetBlock2D: gradient_checkpointing") def create_custom_forward(func): def custom_forward(*inputs): return func(*inputs) return custom_forward x = torch.utils.checkpoint.checkpoint(create_custom_forward(self.forward_body), x, emb, use_reentrant=USE_REENTRANT) else: x = self.forward_body(x, emb) return x class Downsample2D(nn.Module): def __init__(self, channels, out_channels): super().__init__() self.channels = channels self.out_channels = out_channels self.op = nn.Conv2d(self.channels, self.out_channels, 3, stride=2, padding=1) self.gradient_checkpointing = False def forward_body(self, hidden_states): assert hidden_states.shape[1] == self.channels hidden_states = self.op(hidden_states) return hidden_states def forward(self, hidden_states): if self.training and self.gradient_checkpointing: # print("Downsample2D: gradient_checkpointing") def create_custom_forward(func): def custom_forward(*inputs): return func(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.forward_body), hidden_states, use_reentrant=USE_REENTRANT ) else: hidden_states = self.forward_body(hidden_states) return hidden_states class CrossAttention(nn.Module): def __init__( self, query_dim: int, cross_attention_dim: Optional[int] = None, heads: int = 8, dim_head: int = 64, upcast_attention: bool = False, ): super().__init__() inner_dim = dim_head * heads cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim self.upcast_attention = upcast_attention self.scale = dim_head**-0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=False) self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=False) self.to_out = nn.ModuleList([]) self.to_out.append(nn.Linear(inner_dim, query_dim)) # no dropout here self.use_memory_efficient_attention_xformers = False self.use_memory_efficient_attention_mem_eff = False self.use_sdpa = False def set_use_memory_efficient_attention(self, xformers, mem_eff): self.use_memory_efficient_attention_xformers = xformers self.use_memory_efficient_attention_mem_eff = mem_eff def set_use_sdpa(self, sdpa): self.use_sdpa = sdpa def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def forward(self, hidden_states, context=None, mask=None): if self.use_memory_efficient_attention_xformers: return self.forward_memory_efficient_xformers(hidden_states, context, mask) if self.use_memory_efficient_attention_mem_eff: return self.forward_memory_efficient_mem_eff(hidden_states, context, mask) if self.use_sdpa: return self.forward_sdpa(hidden_states, context, mask) query = self.to_q(hidden_states) context = context if context is not None else hidden_states key = self.to_k(context) value = self.to_v(context) query = self.reshape_heads_to_batch_dim(query) key = self.reshape_heads_to_batch_dim(key) value = self.reshape_heads_to_batch_dim(value) hidden_states = self._attention(query, key, value) # linear proj hidden_states = self.to_out[0](hidden_states) # hidden_states = self.to_out[1](hidden_states) # no dropout return hidden_states def _attention(self, query, key, value): if self.upcast_attention: query = query.float() key = key.float() attention_scores = torch.baddbmm( torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), query, key.transpose(-1, -2), beta=0, alpha=self.scale, ) attention_probs = attention_scores.softmax(dim=-1) # cast back to the original dtype attention_probs = attention_probs.to(value.dtype) # compute attention output hidden_states = torch.bmm(attention_probs, value) # reshape hidden_states hidden_states = self.reshape_batch_dim_to_heads(hidden_states) return hidden_states # TODO support Hypernetworks def forward_memory_efficient_xformers(self, x, context=None, mask=None): import xformers.ops h = self.heads q_in = self.to_q(x) context = context if context is not None else x context = context.to(x.dtype) k_in = self.to_k(context) v_in = self.to_v(context) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in q = q.contiguous() k = k.contiguous() v = v.contiguous() out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None) # 最適なのを選んでくれる del q, k, v out = rearrange(out, "b n h d -> b n (h d)", h=h) out = self.to_out[0](out) return out def forward_memory_efficient_mem_eff(self, x, context=None, mask=None): flash_func = FlashAttentionFunction q_bucket_size = 512 k_bucket_size = 1024 h = self.heads q = self.to_q(x) context = context if context is not None else x context = context.to(x.dtype) k = self.to_k(context) v = self.to_v(context) del context, x q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size) out = rearrange(out, "b h n d -> b n (h d)") out = self.to_out[0](out) return out def forward_sdpa(self, x, context=None, mask=None): h = self.heads q_in = self.to_q(x) context = context if context is not None else x context = context.to(x.dtype) k_in = self.to_k(context) v_in = self.to_v(context) q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q_in, k_in, v_in)) del q_in, k_in, v_in out = F.scaled_dot_product_attention(q, k, v, attn_mask=mask, dropout_p=0.0, is_causal=False) out = rearrange(out, "b h n d -> b n (h d)", h=h) out = self.to_out[0](out) return out # feedforward class GEGLU(nn.Module): r""" A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. Parameters: dim_in (`int`): The number of channels in the input. dim_out (`int`): The number of channels in the output. """ def __init__(self, dim_in: int, dim_out: int): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def gelu(self, gate): if gate.device.type != "mps": return F.gelu(gate) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) def forward(self, hidden_states): hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) return hidden_states * self.gelu(gate) class FeedForward(nn.Module): def __init__( self, dim: int, ): super().__init__() inner_dim = int(dim * 4) # mult is always 4 self.net = nn.ModuleList([]) # project in self.net.append(GEGLU(dim, inner_dim)) # project dropout self.net.append(nn.Identity()) # nn.Dropout(0)) # dummy for dropout with 0 # project out self.net.append(nn.Linear(inner_dim, dim)) def forward(self, hidden_states): for module in self.net: hidden_states = module(hidden_states) return hidden_states class BasicTransformerBlock(nn.Module): def __init__( self, dim: int, num_attention_heads: int, attention_head_dim: int, cross_attention_dim: int, upcast_attention: bool = False ): super().__init__() self.gradient_checkpointing = False # 1. Self-Attn self.attn1 = CrossAttention( query_dim=dim, cross_attention_dim=None, heads=num_attention_heads, dim_head=attention_head_dim, upcast_attention=upcast_attention, ) self.ff = FeedForward(dim) # 2. Cross-Attn self.attn2 = CrossAttention( query_dim=dim, cross_attention_dim=cross_attention_dim, heads=num_attention_heads, dim_head=attention_head_dim, upcast_attention=upcast_attention, ) self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) # 3. Feed-forward self.norm3 = nn.LayerNorm(dim) def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool): self.attn1.set_use_memory_efficient_attention(xformers, mem_eff) self.attn2.set_use_memory_efficient_attention(xformers, mem_eff) def set_use_sdpa(self, sdpa: bool): self.attn1.set_use_sdpa(sdpa) self.attn2.set_use_sdpa(sdpa) def forward_body(self, hidden_states, context=None, timestep=None): # 1. Self-Attention norm_hidden_states = self.norm1(hidden_states) hidden_states = self.attn1(norm_hidden_states) + hidden_states # 2. Cross-Attention norm_hidden_states = self.norm2(hidden_states) hidden_states = self.attn2(norm_hidden_states, context=context) + hidden_states # 3. Feed-forward hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states return hidden_states def forward(self, hidden_states, context=None, timestep=None): if self.training and self.gradient_checkpointing: # print("BasicTransformerBlock: checkpointing") def create_custom_forward(func): def custom_forward(*inputs): return func(*inputs) return custom_forward output = torch.utils.checkpoint.checkpoint( create_custom_forward(self.forward_body), hidden_states, context, timestep, use_reentrant=USE_REENTRANT ) else: output = self.forward_body(hidden_states, context, timestep) return output class Transformer2DModel(nn.Module): def __init__( self, num_attention_heads: int = 16, attention_head_dim: int = 88, in_channels: Optional[int] = None, cross_attention_dim: Optional[int] = None, use_linear_projection: bool = False, upcast_attention: bool = False, num_transformer_layers: int = 1, ): super().__init__() self.in_channels = in_channels self.num_attention_heads = num_attention_heads self.attention_head_dim = attention_head_dim inner_dim = num_attention_heads * attention_head_dim self.use_linear_projection = use_linear_projection self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) # self.norm = GroupNorm32(32, in_channels, eps=1e-6, affine=True) if use_linear_projection: self.proj_in = nn.Linear(in_channels, inner_dim) else: self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) blocks = [] for _ in range(num_transformer_layers): blocks.append( BasicTransformerBlock( inner_dim, num_attention_heads, attention_head_dim, cross_attention_dim=cross_attention_dim, upcast_attention=upcast_attention, ) ) self.transformer_blocks = nn.ModuleList(blocks) if use_linear_projection: self.proj_out = nn.Linear(in_channels, inner_dim) else: self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) self.gradient_checkpointing = False def set_use_memory_efficient_attention(self, xformers, mem_eff): for transformer in self.transformer_blocks: transformer.set_use_memory_efficient_attention(xformers, mem_eff) def set_use_sdpa(self, sdpa): for transformer in self.transformer_blocks: transformer.set_use_sdpa(sdpa) def forward(self, hidden_states, encoder_hidden_states=None, timestep=None): # 1. Input batch, _, height, weight = hidden_states.shape residual = hidden_states hidden_states = self.norm(hidden_states) if not self.use_linear_projection: hidden_states = self.proj_in(hidden_states) inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) else: inner_dim = hidden_states.shape[1] hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) hidden_states = self.proj_in(hidden_states) # 2. Blocks for block in self.transformer_blocks: hidden_states = block(hidden_states, context=encoder_hidden_states, timestep=timestep) # 3. Output if not self.use_linear_projection: hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() hidden_states = self.proj_out(hidden_states) else: hidden_states = self.proj_out(hidden_states) hidden_states = hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() output = hidden_states + residual return output class Upsample2D(nn.Module): def __init__(self, channels, out_channels): super().__init__() self.channels = channels self.out_channels = out_channels self.conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1) self.gradient_checkpointing = False def forward_body(self, hidden_states, output_size=None): assert hidden_states.shape[1] == self.channels # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16 # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch # https://github.com/pytorch/pytorch/issues/86679 dtype = hidden_states.dtype if dtype == torch.bfloat16: hidden_states = hidden_states.to(torch.float32) # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984 if hidden_states.shape[0] >= 64: hidden_states = hidden_states.contiguous() # if `output_size` is passed we force the interpolation output size and do not make use of `scale_factor=2` if output_size is None: hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest") else: hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest") # If the input is bfloat16, we cast back to bfloat16 if dtype == torch.bfloat16: hidden_states = hidden_states.to(dtype) hidden_states = self.conv(hidden_states) return hidden_states def forward(self, hidden_states, output_size=None): if self.training and self.gradient_checkpointing: # print("Upsample2D: gradient_checkpointing") def create_custom_forward(func): def custom_forward(*inputs): return func(*inputs) return custom_forward hidden_states = torch.utils.checkpoint.checkpoint( create_custom_forward(self.forward_body), hidden_states, output_size, use_reentrant=USE_REENTRANT ) else: hidden_states = self.forward_body(hidden_states, output_size) return hidden_states class SdxlUNet2DConditionModel(nn.Module): _supports_gradient_checkpointing = True def __init__( self, **kwargs, ): super().__init__() self.in_channels = IN_CHANNELS self.out_channels = OUT_CHANNELS self.model_channels = MODEL_CHANNELS self.time_embed_dim = TIME_EMBED_DIM self.adm_in_channels = ADM_IN_CHANNELS self.gradient_checkpointing = False # self.sample_size = sample_size # time embedding self.time_embed = nn.Sequential( nn.Linear(self.model_channels, self.time_embed_dim), nn.SiLU(), nn.Linear(self.time_embed_dim, self.time_embed_dim), ) # label embedding self.label_emb = nn.Sequential( nn.Sequential( nn.Linear(self.adm_in_channels, self.time_embed_dim), nn.SiLU(), nn.Linear(self.time_embed_dim, self.time_embed_dim), ) ) # input self.input_blocks = nn.ModuleList( [ nn.Sequential( nn.Conv2d(self.in_channels, self.model_channels, kernel_size=3, padding=(1, 1)), ) ] ) # level 0 for i in range(2): layers = [ ResnetBlock2D( in_channels=1 * self.model_channels, out_channels=1 * self.model_channels, ), ] self.input_blocks.append(nn.ModuleList(layers)) self.input_blocks.append( nn.Sequential( Downsample2D( channels=1 * self.model_channels, out_channels=1 * self.model_channels, ), ) ) # level 1 for i in range(2): layers = [ ResnetBlock2D( in_channels=(1 if i == 0 else 2) * self.model_channels, out_channels=2 * self.model_channels, ), Transformer2DModel( num_attention_heads=2 * self.model_channels // 64, attention_head_dim=64, in_channels=2 * self.model_channels, num_transformer_layers=2, use_linear_projection=True, cross_attention_dim=2048, ), ] self.input_blocks.append(nn.ModuleList(layers)) self.input_blocks.append( nn.Sequential( Downsample2D( channels=2 * self.model_channels, out_channels=2 * self.model_channels, ), ) ) # level 2 for i in range(2): layers = [ ResnetBlock2D( in_channels=(2 if i == 0 else 4) * self.model_channels, out_channels=4 * self.model_channels, ), Transformer2DModel( num_attention_heads=4 * self.model_channels // 64, attention_head_dim=64, in_channels=4 * self.model_channels, num_transformer_layers=10, use_linear_projection=True, cross_attention_dim=2048, ), ] self.input_blocks.append(nn.ModuleList(layers)) # mid self.middle_block = nn.ModuleList( [ ResnetBlock2D( in_channels=4 * self.model_channels, out_channels=4 * self.model_channels, ), Transformer2DModel( num_attention_heads=4 * self.model_channels // 64, attention_head_dim=64, in_channels=4 * self.model_channels, num_transformer_layers=10, use_linear_projection=True, cross_attention_dim=2048, ), ResnetBlock2D( in_channels=4 * self.model_channels, out_channels=4 * self.model_channels, ), ] ) # output self.output_blocks = nn.ModuleList([]) # level 2 for i in range(3): layers = [ ResnetBlock2D( in_channels=4 * self.model_channels + (4 if i <= 1 else 2) * self.model_channels, out_channels=4 * self.model_channels, ), Transformer2DModel( num_attention_heads=4 * self.model_channels // 64, attention_head_dim=64, in_channels=4 * self.model_channels, num_transformer_layers=10, use_linear_projection=True, cross_attention_dim=2048, ), ] if i == 2: layers.append( Upsample2D( channels=4 * self.model_channels, out_channels=4 * self.model_channels, ) ) self.output_blocks.append(nn.ModuleList(layers)) # level 1 for i in range(3): layers = [ ResnetBlock2D( in_channels=2 * self.model_channels + (4 if i == 0 else (2 if i == 1 else 1)) * self.model_channels, out_channels=2 * self.model_channels, ), Transformer2DModel( num_attention_heads=2 * self.model_channels // 64, attention_head_dim=64, in_channels=2 * self.model_channels, num_transformer_layers=2, use_linear_projection=True, cross_attention_dim=2048, ), ] if i == 2: layers.append( Upsample2D( channels=2 * self.model_channels, out_channels=2 * self.model_channels, ) ) self.output_blocks.append(nn.ModuleList(layers)) # level 0 for i in range(3): layers = [ ResnetBlock2D( in_channels=1 * self.model_channels + (2 if i == 0 else 1) * self.model_channels, out_channels=1 * self.model_channels, ), ] self.output_blocks.append(nn.ModuleList(layers)) # output self.out = nn.ModuleList( [GroupNorm32(32, self.model_channels), nn.SiLU(), nn.Conv2d(self.model_channels, self.out_channels, 3, padding=1)] ) # region diffusers compatibility def prepare_config(self): self.config = SimpleNamespace() @property def dtype(self) -> torch.dtype: # `torch.dtype`: The dtype of the module (assuming that all the module parameters have the same dtype). return get_parameter_dtype(self) @property def device(self) -> torch.device: # `torch.device`: The device on which the module is (assuming that all the module parameters are on the same device). return get_parameter_device(self) def set_attention_slice(self, slice_size): raise NotImplementedError("Attention slicing is not supported for this model.") def is_gradient_checkpointing(self) -> bool: return any(hasattr(m, "gradient_checkpointing") and m.gradient_checkpointing for m in self.modules()) def enable_gradient_checkpointing(self): self.gradient_checkpointing = True self.set_gradient_checkpointing(value=True) def disable_gradient_checkpointing(self): self.gradient_checkpointing = False self.set_gradient_checkpointing(value=False) def set_use_memory_efficient_attention(self, xformers: bool, mem_eff: bool) -> None: blocks = self.input_blocks + [self.middle_block] + self.output_blocks for block in blocks: for module in block: if hasattr(module, "set_use_memory_efficient_attention"): # print(module.__class__.__name__) module.set_use_memory_efficient_attention(xformers, mem_eff) def set_use_sdpa(self, sdpa: bool) -> None: blocks = self.input_blocks + [self.middle_block] + self.output_blocks for block in blocks: for module in block: if hasattr(module, "set_use_sdpa"): module.set_use_sdpa(sdpa) def set_gradient_checkpointing(self, value=False): blocks = self.input_blocks + [self.middle_block] + self.output_blocks for block in blocks: for module in block.modules(): if hasattr(module, "gradient_checkpointing"): # print(module.__class__.__name__, module.gradient_checkpointing, "->", value) module.gradient_checkpointing = value # endregion def forward(self, x, timesteps=None, context=None, y=None, **kwargs): # broadcast timesteps to batch dimension timesteps = timesteps.expand(x.shape[0]) hs = [] t_emb = get_timestep_embedding(timesteps, self.model_channels) # , repeat_only=False) t_emb = t_emb.to(x.dtype) emb = self.time_embed(t_emb) assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}" assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}" # assert x.dtype == self.dtype emb = emb + self.label_emb(y) def call_module(module, h, emb, context): x = h for layer in module: # print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None) if isinstance(layer, ResnetBlock2D): x = layer(x, emb) elif isinstance(layer, Transformer2DModel): x = layer(x, context) else: x = layer(x) return x # h = x.type(self.dtype) h = x for module in self.input_blocks: h = call_module(module, h, emb, context) hs.append(h) h = call_module(self.middle_block, h, emb, context) for module in self.output_blocks: h = torch.cat([h, hs.pop()], dim=1) h = call_module(module, h, emb, context) h = h.type(x.dtype) h = call_module(self.out, h, emb, context) return h class InferSdxlUNet2DConditionModel: def __init__(self, original_unet: SdxlUNet2DConditionModel, **kwargs): self.delegate = original_unet # override original model's forward method: because forward is not called by `__call__` # overriding `__call__` is not enough, because nn.Module.forward has a special handling self.delegate.forward = self.forward # Deep Shrink self.ds_depth_1 = None self.ds_depth_2 = None self.ds_timesteps_1 = None self.ds_timesteps_2 = None self.ds_ratio = None # call original model's methods def __getattr__(self, name): return getattr(self.delegate, name) def __call__(self, *args, **kwargs): return self.delegate(*args, **kwargs) def set_deep_shrink(self, ds_depth_1, ds_timesteps_1=650, ds_depth_2=None, ds_timesteps_2=None, ds_ratio=0.5): if ds_depth_1 is None: print("Deep Shrink is disabled.") self.ds_depth_1 = None self.ds_timesteps_1 = None self.ds_depth_2 = None self.ds_timesteps_2 = None self.ds_ratio = None else: print( f"Deep Shrink is enabled: [depth={ds_depth_1}/{ds_depth_2}, timesteps={ds_timesteps_1}/{ds_timesteps_2}, ratio={ds_ratio}]" ) self.ds_depth_1 = ds_depth_1 self.ds_timesteps_1 = ds_timesteps_1 self.ds_depth_2 = ds_depth_2 if ds_depth_2 is not None else -1 self.ds_timesteps_2 = ds_timesteps_2 if ds_timesteps_2 is not None else 1000 self.ds_ratio = ds_ratio def forward(self, x, timesteps=None, context=None, y=None, **kwargs): r""" current implementation is a copy of `SdxlUNet2DConditionModel.forward()` with Deep Shrink. """ _self = self.delegate # broadcast timesteps to batch dimension timesteps = timesteps.expand(x.shape[0]) hs = [] t_emb = get_timestep_embedding(timesteps, _self.model_channels) # , repeat_only=False) t_emb = t_emb.to(x.dtype) emb = _self.time_embed(t_emb) assert x.shape[0] == y.shape[0], f"batch size mismatch: {x.shape[0]} != {y.shape[0]}" assert x.dtype == y.dtype, f"dtype mismatch: {x.dtype} != {y.dtype}" # assert x.dtype == _self.dtype emb = emb + _self.label_emb(y) def call_module(module, h, emb, context): x = h for layer in module: # print(layer.__class__.__name__, x.dtype, emb.dtype, context.dtype if context is not None else None) if isinstance(layer, ResnetBlock2D): x = layer(x, emb) elif isinstance(layer, Transformer2DModel): x = layer(x, context) else: x = layer(x) return x # h = x.type(self.dtype) h = x for depth, module in enumerate(_self.input_blocks): # Deep Shrink if self.ds_depth_1 is not None: if (depth == self.ds_depth_1 and timesteps[0] >= self.ds_timesteps_1) or ( self.ds_depth_2 is not None and depth == self.ds_depth_2 and timesteps[0] < self.ds_timesteps_1 and timesteps[0] >= self.ds_timesteps_2 ): # print("downsample", h.shape, self.ds_ratio) org_dtype = h.dtype if org_dtype == torch.bfloat16: h = h.to(torch.float32) h = F.interpolate(h, scale_factor=self.ds_ratio, mode="bicubic", align_corners=False).to(org_dtype) h = call_module(module, h, emb, context) hs.append(h) h = call_module(_self.middle_block, h, emb, context) for module in _self.output_blocks: # Deep Shrink if self.ds_depth_1 is not None: if hs[-1].shape[-2:] != h.shape[-2:]: # print("upsample", h.shape, hs[-1].shape) h = resize_like(h, hs[-1]) h = torch.cat([h, hs.pop()], dim=1) h = call_module(module, h, emb, context) # Deep Shrink: in case of depth 0 if self.ds_depth_1 == 0 and h.shape[-2:] != x.shape[-2:]: # print("upsample", h.shape, x.shape) h = resize_like(h, x) h = h.type(x.dtype) h = call_module(_self.out, h, emb, context) return h if __name__ == "__main__": import time print("create unet") unet = SdxlUNet2DConditionModel() unet.to("cuda") unet.set_use_memory_efficient_attention(True, False) unet.set_gradient_checkpointing(True) unet.train() # 使用メモリ量確認用の疑似学習ループ print("preparing optimizer") # optimizer = torch.optim.SGD(unet.parameters(), lr=1e-3, nesterov=True, momentum=0.9) # not working # import bitsandbytes # optimizer = bitsandbytes.adam.Adam8bit(unet.parameters(), lr=1e-3) # not working # optimizer = bitsandbytes.optim.RMSprop8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2 # optimizer=bitsandbytes.optim.Adagrad8bit(unet.parameters(), lr=1e-3) # working at 23.5 GB with torch2 import transformers optimizer = transformers.optimization.Adafactor(unet.parameters(), relative_step=True) # working at 22.2GB with torch2 scaler = torch.cuda.amp.GradScaler(enabled=True) print("start training") steps = 10 batch_size = 1 for step in range(steps): print(f"step {step}") if step == 1: time_start = time.perf_counter() x = torch.randn(batch_size, 4, 128, 128).cuda() # 1024x1024 t = torch.randint(low=0, high=10, size=(batch_size,), device="cuda") ctx = torch.randn(batch_size, 77, 2048).cuda() y = torch.randn(batch_size, ADM_IN_CHANNELS).cuda() with torch.cuda.amp.autocast(enabled=True): output = unet(x, t, ctx, y) target = torch.randn_like(output) loss = torch.nn.functional.mse_loss(output, target) scaler.scale(loss).backward() scaler.step(optimizer) scaler.update() optimizer.zero_grad(set_to_none=True) time_end = time.perf_counter() print(f"elapsed time: {time_end - time_start} [sec] for last {steps - 1} steps")