import contextlib import importlib import torch import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import # pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return class CondFunc: # pylint: disable=missing-class-docstring def __new__(cls, orig_func, sub_func, cond_func): self = super(CondFunc, cls).__new__(cls) if isinstance(orig_func, str): func_path = orig_func.split('.') for i in range(len(func_path)-1, -1, -1): try: resolved_obj = importlib.import_module('.'.join(func_path[:i])) break except ImportError: pass for attr_name in func_path[i:-1]: resolved_obj = getattr(resolved_obj, attr_name) orig_func = getattr(resolved_obj, func_path[-1]) setattr(resolved_obj, func_path[-1], lambda *args, **kwargs: self(*args, **kwargs)) self.__init__(orig_func, sub_func, cond_func) return lambda *args, **kwargs: self(*args, **kwargs) def __init__(self, orig_func, sub_func, cond_func): self.__orig_func = orig_func self.__sub_func = sub_func self.__cond_func = cond_func def __call__(self, *args, **kwargs): if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs): return self.__sub_func(self.__orig_func, *args, **kwargs) else: return self.__orig_func(*args, **kwargs) _utils = torch.utils.data._utils def _shutdown_workers(self): if torch.utils.data._utils is None or torch.utils.data._utils.python_exit_status is True or torch.utils.data._utils.python_exit_status is None: return if hasattr(self, "_shutdown") and not self._shutdown: self._shutdown = True try: if hasattr(self, '_pin_memory_thread'): self._pin_memory_thread_done_event.set() self._worker_result_queue.put((None, None)) self._pin_memory_thread.join() self._worker_result_queue.cancel_join_thread() self._worker_result_queue.close() self._workers_done_event.set() for worker_id in range(len(self._workers)): if self._persistent_workers or self._workers_status[worker_id]: self._mark_worker_as_unavailable(worker_id, shutdown=True) for w in self._workers: # pylint: disable=invalid-name w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL) for q in self._index_queues: # pylint: disable=invalid-name q.cancel_join_thread() q.close() finally: if self._worker_pids_set: torch.utils.data._utils.signal_handling._remove_worker_pids(id(self)) self._worker_pids_set = False for w in self._workers: # pylint: disable=invalid-name if w.is_alive(): w.terminate() class DummyDataParallel(torch.nn.Module): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods def __new__(cls, module, device_ids=None, output_device=None, dim=0): # pylint: disable=unused-argument if isinstance(device_ids, list) and len(device_ids) > 1: print("IPEX backend doesn't support DataParallel on multiple XPU devices") return module.to("xpu") def return_null_context(*args, **kwargs): # pylint: disable=unused-argument return contextlib.nullcontext() def check_device(device): return bool((isinstance(device, torch.device) and device.type == "cuda") or (isinstance(device, str) and "cuda" in device) or isinstance(device, int)) def return_xpu(device): return f"xpu:{device.split(':')[-1]}" if isinstance(device, str) and ":" in device else f"xpu:{device}" if isinstance(device, int) else torch.device("xpu") if isinstance(device, torch.device) else "xpu" def ipex_no_cuda(orig_func, *args, **kwargs): torch.cuda.is_available = lambda: False orig_func(*args, **kwargs) torch.cuda.is_available = torch.xpu.is_available original_autocast = torch.autocast def ipex_autocast(*args, **kwargs): if len(args) > 0 and args[0] == "cuda": return original_autocast("xpu", *args[1:], **kwargs) else: return original_autocast(*args, **kwargs) # Embedding BF16 original_torch_cat = torch.cat def torch_cat(tensor, *args, **kwargs): if len(tensor) == 3 and (tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype): return original_torch_cat([tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], *args, **kwargs) else: return original_torch_cat(tensor, *args, **kwargs) # Latent antialias: original_interpolate = torch.nn.functional.interpolate def interpolate(tensor, size=None, scale_factor=None, mode='nearest', align_corners=None, recompute_scale_factor=None, antialias=False): # pylint: disable=too-many-arguments if antialias or align_corners is not None: return_device = tensor.device return_dtype = tensor.dtype return original_interpolate(tensor.to("cpu", dtype=torch.float32), size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias).to(return_device, dtype=return_dtype) else: return original_interpolate(tensor, size=size, scale_factor=scale_factor, mode=mode, align_corners=align_corners, recompute_scale_factor=recompute_scale_factor, antialias=antialias) original_linalg_solve = torch.linalg.solve def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name if A.device != torch.device("cpu") or B.device != torch.device("cpu"): return_device = A.device return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to(return_device) else: return original_linalg_solve(A, B, *args, **kwargs) if torch.xpu.has_fp64_dtype(): original_torch_bmm = torch.bmm original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention else: # 64 bit attention workarounds for Alchemist: try: from .attention import torch_bmm_32_bit as original_torch_bmm from .attention import scaled_dot_product_attention_32_bit as original_scaled_dot_product_attention except Exception: # pylint: disable=broad-exception-caught original_torch_bmm = torch.bmm original_scaled_dot_product_attention = torch.nn.functional.scaled_dot_product_attention # dtype errors: def torch_bmm(input, mat2, *, out=None): if input.dtype != mat2.dtype: mat2 = mat2.to(input.dtype) return original_torch_bmm(input, mat2, out=out) def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False): if query.dtype != key.dtype: key = key.to(dtype=query.dtype) if query.dtype != value.dtype: value = value.to(dtype=query.dtype) return original_scaled_dot_product_attention(query, key, value, attn_mask=attn_mask, dropout_p=dropout_p, is_causal=is_causal) @property def is_cuda(self): return self.device.type == 'xpu' def ipex_hijacks(): CondFunc('torch.tensor', lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc('torch.Tensor.to', lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs), lambda orig_func, self, device=None, *args, **kwargs: check_device(device)) CondFunc('torch.Tensor.cuda', lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs), lambda orig_func, self, device=None, *args, **kwargs: check_device(device)) CondFunc('torch.UntypedStorage.__init__', lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc('torch.UntypedStorage.cuda', lambda orig_func, self, device=None, *args, **kwargs: orig_func(self, return_xpu(device), *args, **kwargs), lambda orig_func, self, device=None, *args, **kwargs: check_device(device)) CondFunc('torch.empty', lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc('torch.randn', lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc('torch.ones', lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc('torch.zeros', lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc('torch.linspace', lambda orig_func, *args, device=None, **kwargs: orig_func(*args, device=return_xpu(device), **kwargs), lambda orig_func, *args, device=None, **kwargs: check_device(device)) CondFunc('torch.load', lambda orig_func, f, map_location=None, pickle_module=None, *, weights_only=False, mmap=None, **kwargs: orig_func(orig_func, f, map_location=return_xpu(map_location), pickle_module=pickle_module, weights_only=weights_only, mmap=mmap, **kwargs), lambda orig_func, f, map_location=None, pickle_module=None, *, weights_only=False, mmap=None, **kwargs: check_device(map_location)) if hasattr(torch.xpu, "Generator"): CondFunc('torch.Generator', lambda orig_func, device=None: torch.xpu.Generator(return_xpu(device)), lambda orig_func, device=None: device is not None and device != torch.device("cpu") and device != "cpu") else: CondFunc('torch.Generator', lambda orig_func, device=None: orig_func(return_xpu(device)), lambda orig_func, device=None: check_device(device)) # TiledVAE and ControlNet: CondFunc('torch.batch_norm', lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input, weight if weight is not None else torch.ones(input.size()[1], device=input.device), bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs), lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu")) CondFunc('torch.instance_norm', lambda orig_func, input, weight, bias, *args, **kwargs: orig_func(input, weight if weight is not None else torch.ones(input.size()[1], device=input.device), bias if bias is not None else torch.zeros(input.size()[1], device=input.device), *args, **kwargs), lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu")) # Functions with dtype errors: CondFunc('torch.nn.modules.GroupNorm.forward', lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), lambda orig_func, self, input: input.dtype != self.weight.data.dtype) # Training: CondFunc('torch.nn.modules.linear.Linear.forward', lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), lambda orig_func, self, input: input.dtype != self.weight.data.dtype) CondFunc('torch.nn.modules.conv.Conv2d.forward', lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)), lambda orig_func, self, input: input.dtype != self.weight.data.dtype) # BF16: CondFunc('torch.nn.functional.layer_norm', lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs), lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight is not None and input.dtype != weight.data.dtype) # SwinIR BF16: CondFunc('torch.nn.functional.pad', lambda orig_func, input, pad, mode='constant', value=None: orig_func(input.to(torch.float32), pad, mode=mode, value=value).to(dtype=torch.bfloat16), lambda orig_func, input, pad, mode='constant', value=None: mode == 'reflect' and input.dtype == torch.bfloat16) # Diffusers Float64 (Alchemist GPUs doesn't support 64 bit): if not torch.xpu.has_fp64_dtype(): CondFunc('torch.from_numpy', lambda orig_func, ndarray: orig_func(ndarray.astype('float32')), lambda orig_func, ndarray: ndarray.dtype == float) # Broken functions when torch.cuda.is_available is True: # Pin Memory: CondFunc('torch.utils.data.dataloader._BaseDataLoaderIter.__init__', lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs), lambda orig_func, *args, **kwargs: True) # Functions that make compile mad with CondFunc: torch.nn.DataParallel = DummyDataParallel torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = _shutdown_workers torch.autocast = ipex_autocast torch.backends.cuda.sdp_kernel = return_null_context torch.UntypedStorage.is_cuda = is_cuda torch.nn.functional.interpolate = interpolate torch.linalg.solve = linalg_solve torch.bmm = torch_bmm torch.cat = torch_cat torch.nn.functional.scaled_dot_product_attention = scaled_dot_product_attention