import torch import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import import diffusers #0.24.0 # pylint: disable=import-error from diffusers.models.attention_processor import Attention # pylint: disable=protected-access, missing-function-docstring, line-too-long class SlicedAttnProcessor: # pylint: disable=too-few-public-methods r""" Processor for implementing sliced attention. Args: slice_size (`int`, *optional*): The number of steps to compute attention. Uses as many slices as `attention_head_dim // slice_size`, and `attention_head_dim` must be a multiple of the `slice_size`. """ def __init__(self, slice_size): self.slice_size = slice_size def __call__(self, attn: Attention, hidden_states, encoder_hidden_states=None, attention_mask=None): # pylint: disable=too-many-statements, too-many-locals, too-many-branches residual = hidden_states input_ndim = hidden_states.ndim if input_ndim == 4: batch_size, channel, height, width = hidden_states.shape hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) batch_size, sequence_length, _ = ( hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape ) attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) query = attn.to_q(hidden_states) dim = query.shape[-1] query = attn.head_to_batch_dim(query) if encoder_hidden_states is None: encoder_hidden_states = hidden_states elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) key = attn.to_k(encoder_hidden_states) value = attn.to_v(encoder_hidden_states) key = attn.head_to_batch_dim(key) value = attn.head_to_batch_dim(value) batch_size_attention, query_tokens, shape_three = query.shape hidden_states = torch.zeros( (batch_size_attention, query_tokens, dim // attn.heads), device=query.device, dtype=query.dtype ) #ARC GPUs can't allocate more than 4GB to a single block, Slice it: block_multiply = query.element_size() slice_block_size = self.slice_size * shape_three / 1024 / 1024 * block_multiply block_size = query_tokens * slice_block_size split_2_slice_size = query_tokens if block_size > 4: do_split_2 = True #Find something divisible with the query_tokens while (split_2_slice_size * slice_block_size) > 4: split_2_slice_size = split_2_slice_size // 2 if split_2_slice_size <= 1: split_2_slice_size = 1 break else: do_split_2 = False for i in range(batch_size_attention // self.slice_size): start_idx = i * self.slice_size end_idx = (i + 1) * self.slice_size if do_split_2: for i2 in range(query_tokens // split_2_slice_size): # pylint: disable=invalid-name start_idx_2 = i2 * split_2_slice_size end_idx_2 = (i2 + 1) * split_2_slice_size query_slice = query[start_idx:end_idx, start_idx_2:end_idx_2] key_slice = key[start_idx:end_idx, start_idx_2:end_idx_2] attn_mask_slice = attention_mask[start_idx:end_idx, start_idx_2:end_idx_2] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx, start_idx_2:end_idx_2]) hidden_states[start_idx:end_idx, start_idx_2:end_idx_2] = attn_slice else: query_slice = query[start_idx:end_idx] key_slice = key[start_idx:end_idx] attn_mask_slice = attention_mask[start_idx:end_idx] if attention_mask is not None else None attn_slice = attn.get_attention_scores(query_slice, key_slice, attn_mask_slice) attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) hidden_states[start_idx:end_idx] = attn_slice hidden_states = attn.batch_to_head_dim(hidden_states) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) if input_ndim == 4: hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width) if attn.residual_connection: hidden_states = hidden_states + residual hidden_states = hidden_states / attn.rescale_output_factor return hidden_states def ipex_diffusers(): #ARC GPUs can't allocate more than 4GB to a single block: diffusers.models.attention_processor.SlicedAttnProcessor = SlicedAttnProcessor