import torch from diffusers import StableDiffusionPipeline torch.backends.cudnn.benchmark = True torch.backends.cuda.matmul.allow_tf32 = True from typing import Any, Callable, Dict, List, Optional, Union from diffusers import StableDiffusionPipeline from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput class two_step_pipeline(StableDiffusionPipeline): @torch.no_grad() def two_step_pipeline( self, prompt: Union[str, List[str]] = None, modified_prompts: Union[str, List[str]] = None, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, latents: Optional[torch.FloatTensor] = None, prompt_embeds: Optional[torch.FloatTensor] = None, negative_prompt_embeds: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: int = 1, cross_attention_kwargs: Optional[Dict[str, Any]] = None, iteration: float = 3.0, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`, *optional*): The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. instead. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. If not defined, one has to pass `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator` or `List[torch.Generator]`, *optional*): One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, text embeddings will be generated from `prompt` input argument. negative_prompt_embeds (`torch.FloatTensor`, *optional*): Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input argument. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. cross_attention_kwargs (`dict`, *optional*): A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under `self.processor` in [diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). Examples: Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs( prompt, height, width, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds, ) # 2. Define call parameters if prompt is not None and isinstance(prompt, str): batch_size = 1 elif prompt is not None and isinstance(prompt, list): batch_size = len(prompt) else: batch_size = prompt_embeds.shape[0] device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt modified_embeds = self._encode_prompt( modified_prompts, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) print("mod prompt size : ", modified_embeds.size(), modified_embeds.dtype) prompt_embeds = self._encode_prompt( prompt, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds=prompt_embeds, negative_prompt_embeds=negative_prompt_embeds, ) print("prompt size : ", prompt_embeds.size(), prompt_embeds.dtype) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.config.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, prompt_embeds.dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order with self.progress_bar(total=num_inference_steps) as progress_bar: for i, t in enumerate(timesteps): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input( latent_model_input, t ) # predict the noise residual noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=prompt_embeds, cross_attention_kwargs=cross_attention_kwargs, ).sample # perform guidance if do_classifier_free_guidance: noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) noise_pred = noise_pred_uncond + guidance_scale * ( noise_pred_text - noise_pred_uncond ) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( noise_pred, t, latents, **extra_step_kwargs ).prev_sample # call the callback, if provided if i == len(timesteps) - 1 or ( (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0 ): progress_bar.update() if callback is not None and i % callback_steps == 0: callback(i, t, latents) if i == int(len(timesteps) / iteration): print("modified prompts") prompt_embeds = modified_embeds if output_type == "latent": image = latents has_nsfw_concept = None elif output_type == "pil": # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker( image, device, prompt_embeds.dtype ) # 10. Convert to PIL image = self.numpy_to_pil(image) else: # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker( image, device, prompt_embeds.dtype ) # Offload last model to CPU if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: self.final_offload_hook.offload() if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput( images=image, nsfw_content_detected=has_nsfw_concept ) @torch.no_grad() def multi_character_diffusion( self, prompt: Union[str, List[str]], pos: List[str], mix_val: Union[float, List[float]] = 0.5, height: Optional[int] = None, width: Optional[int] = None, num_inference_steps: int = 50, guidance_scale: float = 7.5, negative_prompt: Optional[Union[str, List[str]]] = None, num_images_per_prompt: Optional[int] = 1, eta: float = 0.0, generator: Optional[torch.Generator] = None, latents: Optional[torch.FloatTensor] = None, output_type: Optional[str] = "pil", return_dict: bool = True, callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, callback_steps: Optional[int] = 1, ): r""" Function invoked when calling the pipeline for generation. Args: prompt (`str` or `List[str]`): The prompt or prompts to guide the image generation. height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The height in pixels of the generated image. width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): The width in pixels of the generated image. num_inference_steps (`int`, *optional*, defaults to 50): The number of denoising steps. More denoising steps usually lead to a higher quality image at the expense of slower inference. guidance_scale (`float`, *optional*, defaults to 7.5): Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). `guidance_scale` is defined as `w` of equation 2. of [Imagen Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, usually at the expense of lower image quality. negative_prompt (`str` or `List[str]`, *optional*): The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`). num_images_per_prompt (`int`, *optional*, defaults to 1): The number of images to generate per prompt. eta (`float`, *optional*, defaults to 0.0): Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to [`schedulers.DDIMScheduler`], will be ignored for others. generator (`torch.Generator`, *optional*): A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. latents (`torch.FloatTensor`, *optional*): Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image generation. Can be used to tweak the same generation with different prompts. If not provided, a latents tensor will ge generated by sampling using the supplied random `generator`. output_type (`str`, *optional*, defaults to `"pil"`): The output format of the generate image. Choose between [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a plain tuple. callback (`Callable`, *optional*): A function that will be called every `callback_steps` steps during inference. The function will be called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. callback_steps (`int`, *optional*, defaults to 1): The frequency at which the `callback` function will be called. If not specified, the callback will be called at every step. Returns: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images, and the second element is a list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" (nsfw) content, according to the `safety_checker`. """ # 生成する画像サイズは8で割り切れなければならない height = height - height % 8 width = width - width % 8 # 0. Default height and width to unet height = height or self.unet.config.sample_size * self.vae_scale_factor width = width or self.unet.config.sample_size * self.vae_scale_factor # 1. Check inputs. Raise error if not correct self.check_inputs(prompt[0], height, width, callback_steps) # 2. Define call parameters batch_size = 1 if isinstance(prompt[0], str) else len(prompt[0]) device = self._execution_device # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. do_classifier_free_guidance = guidance_scale > 1.0 # 3. Encode input prompt text_embeddings = [] for i in range(len(prompt)): one_text_embeddings = self._encode_prompt( prompt[i], device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt[i], ) text_embeddings.append(one_text_embeddings) # 4. Prepare timesteps self.scheduler.set_timesteps(num_inference_steps, device=device) timesteps = self.scheduler.timesteps # 5. Prepare latent variables num_channels_latents = self.unet.in_channels latents = self.prepare_latents( batch_size * num_images_per_prompt, num_channels_latents, height, width, text_embeddings[0].dtype, device, generator, latents, ) # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) # 7. Denoising loop # num_warmup_steps = len(timesteps) - num_inference_steps# * self.scheduler.order for i, t in enumerate(self.progress_bar(timesteps)): # expand the latents if we are doing classifier free guidance latent_model_input = ( torch.cat([latents] * 2) if do_classifier_free_guidance else latents ) latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) # predict the noise residual noise_preds = [] for i in range(len(prompt)): noise_pred = self.unet( latent_model_input, t, encoder_hidden_states=text_embeddings[i] ).sample noise_preds.append(noise_pred) # perform guidance if do_classifier_free_guidance: noise_pred_unconds = [] noise_pred_texts = [] for i in range(len(prompt)): noise_pred_uncond, noise_pred_text = noise_preds[i].chunk(2) noise_pred_unconds.append(noise_pred_uncond) noise_pred_texts.append(noise_pred_text) # TODO:posに基づいてフィルターを作る mask_list = [] for i in range(len(prompt)): pos_base = pos[i].split("-") pos_dev = pos_base[0].split(":") # 1:2 pos_pos = pos_base[1].split(":") # 0:0 one_filter = None zero_f = False for y in range(int(pos_dev[0])): one_line = None zero = False for x in range(int(pos_dev[1])): if y == int(pos_pos[0]) and x == int(pos_pos[1]): # print("same", zero, (height//8) // int(pos_dev[0]), (width//8) // int(pos_dev[1])) if zero: one_block = ( torch.ones( batch_size, 4, (height // 8) // int(pos_dev[0]), (width // 8) // int(pos_dev[1]), ) .to(device) .to(torch.float16) * mix_val[i] ) one_line = torch.cat((one_line, one_block), 3) else: zero = True one_block = ( torch.ones( batch_size, 4, (height // 8) // int(pos_dev[0]), (width // 8) // int(pos_dev[1]), ) .to(device) .to(torch.float16) * mix_val[i] ) one_line = one_block else: # print("else", zero, (height//8) // int(pos_dev[0]), (width//8) // int(pos_dev[1])) if zero: one_block = ( torch.zeros( batch_size, 4, (height // 8) // int(pos_dev[0]), (width // 8) // int(pos_dev[1]), ) .to(device) .to(torch.float16) ) one_line = torch.cat((one_line, one_block), 3) else: zero = True one_block = ( torch.zeros( batch_size, 4, (height // 8) // int(pos_dev[0]), (width // 8) // int(pos_dev[1]), ) .to(device) .to(torch.float16) ) one_line = one_block one_block = ( torch.zeros( batch_size, 4, (height // 8) // int(pos_dev[0]), (width // 8) - one_line.size()[3], ) .to(device) .to(torch.float16) ) one_line = torch.cat((one_line, one_block), 3) if zero_f: one_filter = torch.cat((one_filter, one_line), 2) else: zero_f = True one_filter = one_line mask_list.append(one_filter) for i in range(len(mask_list)): import torchvision torchvision.transforms.functional.to_pil_image( mask_list[i][0] * 256 ).save(str(i) + ".png") result = None noise_preds = [] for i in range(len(prompt)): noise_pred = noise_pred_unconds[i] + guidance_scale * ( noise_pred_texts[i] - noise_pred_unconds[i] ) noise_preds.append(noise_pred) result = noise_preds[0] * mask_list[0] for i in range(1, len(prompt)): result += noise_preds[i] * mask_list[i] # noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 latents = self.scheduler.step( result, t, latents, **extra_step_kwargs ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(i, t, latents) # 8. Post-processing image = self.decode_latents(latents) # 9. Run safety checker image, has_nsfw_concept = self.run_safety_checker( image, device, text_embeddings[0].dtype ) # 10. Convert to PIL if output_type == "pil": image = self.numpy_to_pil(image) output = [] import torchvision for i in mask_list: output.append( torchvision.transforms.functional.to_pil_image(i[0] * 256) ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput( images=image, nsfw_content_detected=has_nsfw_concept )