# Convert LoRA to different rank approximation (should only be used to go to lower rank) # This code is based off the extract_lora_from_models.py file which is based on https://github.com/cloneofsimo/lora/blob/develop/lora_diffusion/cli_svd.py # Thanks to cloneofsimo import argparse import torch from safetensors.torch import load_file, save_file, safe_open from tqdm import tqdm from library import train_util, model_util import numpy as np MIN_SV = 1e-6 # Model save and load functions def load_state_dict(file_name, dtype): if model_util.is_safetensors(file_name): sd = load_file(file_name) with safe_open(file_name, framework="pt") as f: metadata = f.metadata() else: sd = torch.load(file_name, map_location='cpu') metadata = None for key in list(sd.keys()): if type(sd[key]) == torch.Tensor: sd[key] = sd[key].to(dtype) return sd, metadata def save_to_file(file_name, model, state_dict, dtype, metadata): if dtype is not None: for key in list(state_dict.keys()): if type(state_dict[key]) == torch.Tensor: state_dict[key] = state_dict[key].to(dtype) if model_util.is_safetensors(file_name): save_file(model, file_name, metadata) else: torch.save(model, file_name) # Indexing functions def index_sv_cumulative(S, target): original_sum = float(torch.sum(S)) cumulative_sums = torch.cumsum(S, dim=0)/original_sum index = int(torch.searchsorted(cumulative_sums, target)) + 1 index = max(1, min(index, len(S)-1)) return index def index_sv_fro(S, target): S_squared = S.pow(2) s_fro_sq = float(torch.sum(S_squared)) sum_S_squared = torch.cumsum(S_squared, dim=0)/s_fro_sq index = int(torch.searchsorted(sum_S_squared, target**2)) + 1 index = max(1, min(index, len(S)-1)) return index def index_sv_ratio(S, target): max_sv = S[0] min_sv = max_sv/target index = int(torch.sum(S > min_sv).item()) index = max(1, min(index, len(S)-1)) return index # Modified from Kohaku-blueleaf's extract/merge functions def extract_conv(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1): out_size, in_size, kernel_size, _ = weight.size() U, S, Vh = torch.linalg.svd(weight.reshape(out_size, -1).to(device)) param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale) lora_rank = param_dict["new_rank"] U = U[:, :lora_rank] S = S[:lora_rank] U = U @ torch.diag(S) Vh = Vh[:lora_rank, :] param_dict["lora_down"] = Vh.reshape(lora_rank, in_size, kernel_size, kernel_size).cpu() param_dict["lora_up"] = U.reshape(out_size, lora_rank, 1, 1).cpu() del U, S, Vh, weight return param_dict def extract_linear(weight, lora_rank, dynamic_method, dynamic_param, device, scale=1): out_size, in_size = weight.size() U, S, Vh = torch.linalg.svd(weight.to(device)) param_dict = rank_resize(S, lora_rank, dynamic_method, dynamic_param, scale) lora_rank = param_dict["new_rank"] U = U[:, :lora_rank] S = S[:lora_rank] U = U @ torch.diag(S) Vh = Vh[:lora_rank, :] param_dict["lora_down"] = Vh.reshape(lora_rank, in_size).cpu() param_dict["lora_up"] = U.reshape(out_size, lora_rank).cpu() del U, S, Vh, weight return param_dict def merge_conv(lora_down, lora_up, device): in_rank, in_size, kernel_size, k_ = lora_down.shape out_size, out_rank, _, _ = lora_up.shape assert in_rank == out_rank and kernel_size == k_, f"rank {in_rank} {out_rank} or kernel {kernel_size} {k_} mismatch" lora_down = lora_down.to(device) lora_up = lora_up.to(device) merged = lora_up.reshape(out_size, -1) @ lora_down.reshape(in_rank, -1) weight = merged.reshape(out_size, in_size, kernel_size, kernel_size) del lora_up, lora_down return weight def merge_linear(lora_down, lora_up, device): in_rank, in_size = lora_down.shape out_size, out_rank = lora_up.shape assert in_rank == out_rank, f"rank {in_rank} {out_rank} mismatch" lora_down = lora_down.to(device) lora_up = lora_up.to(device) weight = lora_up @ lora_down del lora_up, lora_down return weight # Calculate new rank def rank_resize(S, rank, dynamic_method, dynamic_param, scale=1): param_dict = {} if dynamic_method=="sv_ratio": # Calculate new dim and alpha based off ratio new_rank = index_sv_ratio(S, dynamic_param) + 1 new_alpha = float(scale*new_rank) elif dynamic_method=="sv_cumulative": # Calculate new dim and alpha based off cumulative sum new_rank = index_sv_cumulative(S, dynamic_param) + 1 new_alpha = float(scale*new_rank) elif dynamic_method=="sv_fro": # Calculate new dim and alpha based off sqrt sum of squares new_rank = index_sv_fro(S, dynamic_param) + 1 new_alpha = float(scale*new_rank) else: new_rank = rank new_alpha = float(scale*new_rank) if S[0] <= MIN_SV: # Zero matrix, set dim to 1 new_rank = 1 new_alpha = float(scale*new_rank) elif new_rank > rank: # cap max rank at rank new_rank = rank new_alpha = float(scale*new_rank) # Calculate resize info s_sum = torch.sum(torch.abs(S)) s_rank = torch.sum(torch.abs(S[:new_rank])) S_squared = S.pow(2) s_fro = torch.sqrt(torch.sum(S_squared)) s_red_fro = torch.sqrt(torch.sum(S_squared[:new_rank])) fro_percent = float(s_red_fro/s_fro) param_dict["new_rank"] = new_rank param_dict["new_alpha"] = new_alpha param_dict["sum_retained"] = (s_rank)/s_sum param_dict["fro_retained"] = fro_percent param_dict["max_ratio"] = S[0]/S[new_rank - 1] return param_dict def resize_lora_model(lora_sd, new_rank, save_dtype, device, dynamic_method, dynamic_param, verbose): network_alpha = None network_dim = None verbose_str = "\n" fro_list = [] # Extract loaded lora dim and alpha for key, value in lora_sd.items(): if network_alpha is None and 'alpha' in key: network_alpha = value if network_dim is None and 'lora_down' in key and len(value.size()) == 2: network_dim = value.size()[0] if network_alpha is not None and network_dim is not None: break if network_alpha is None: network_alpha = network_dim scale = network_alpha/network_dim if dynamic_method: print(f"Dynamically determining new alphas and dims based off {dynamic_method}: {dynamic_param}, max rank is {new_rank}") lora_down_weight = None lora_up_weight = None o_lora_sd = lora_sd.copy() block_down_name = None block_up_name = None with torch.no_grad(): for key, value in tqdm(lora_sd.items()): weight_name = None if 'lora_down' in key: block_down_name = key.rsplit('.lora_down', 1)[0] weight_name = key.rsplit(".", 1)[-1] lora_down_weight = value else: continue # find corresponding lora_up and alpha block_up_name = block_down_name lora_up_weight = lora_sd.get(block_up_name + '.lora_up.' + weight_name, None) lora_alpha = lora_sd.get(block_down_name + '.alpha', None) weights_loaded = (lora_down_weight is not None and lora_up_weight is not None) if weights_loaded: conv2d = (len(lora_down_weight.size()) == 4) if lora_alpha is None: scale = 1.0 else: scale = lora_alpha/lora_down_weight.size()[0] if conv2d: full_weight_matrix = merge_conv(lora_down_weight, lora_up_weight, device) param_dict = extract_conv(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale) else: full_weight_matrix = merge_linear(lora_down_weight, lora_up_weight, device) param_dict = extract_linear(full_weight_matrix, new_rank, dynamic_method, dynamic_param, device, scale) if verbose: max_ratio = param_dict['max_ratio'] sum_retained = param_dict['sum_retained'] fro_retained = param_dict['fro_retained'] if not np.isnan(fro_retained): fro_list.append(float(fro_retained)) verbose_str+=f"{block_down_name:75} | " verbose_str+=f"sum(S) retained: {sum_retained:.1%}, fro retained: {fro_retained:.1%}, max(S) ratio: {max_ratio:0.1f}" if verbose and dynamic_method: verbose_str+=f", dynamic | dim: {param_dict['new_rank']}, alpha: {param_dict['new_alpha']}\n" else: verbose_str+=f"\n" new_alpha = param_dict['new_alpha'] o_lora_sd[block_down_name + "." + "lora_down.weight"] = param_dict["lora_down"].to(save_dtype).contiguous() o_lora_sd[block_up_name + "." + "lora_up.weight"] = param_dict["lora_up"].to(save_dtype).contiguous() o_lora_sd[block_up_name + "." "alpha"] = torch.tensor(param_dict['new_alpha']).to(save_dtype) block_down_name = None block_up_name = None lora_down_weight = None lora_up_weight = None weights_loaded = False del param_dict if verbose: print(verbose_str) print(f"Average Frobenius norm retention: {np.mean(fro_list):.2%} | std: {np.std(fro_list):0.3f}") print("resizing complete") return o_lora_sd, network_dim, new_alpha def resize(args): if args.save_to is None or not (args.save_to.endswith('.ckpt') or args.save_to.endswith('.pt') or args.save_to.endswith('.pth') or args.save_to.endswith('.safetensors')): raise Exception("The --save_to argument must be specified and must be a .ckpt , .pt, .pth or .safetensors file.") def str_to_dtype(p): if p == 'float': return torch.float if p == 'fp16': return torch.float16 if p == 'bf16': return torch.bfloat16 return None if args.dynamic_method and not args.dynamic_param: raise Exception("If using dynamic_method, then dynamic_param is required") merge_dtype = str_to_dtype('float') # matmul method above only seems to work in float32 save_dtype = str_to_dtype(args.save_precision) if save_dtype is None: save_dtype = merge_dtype print("loading Model...") lora_sd, metadata = load_state_dict(args.model, merge_dtype) print("Resizing Lora...") state_dict, old_dim, new_alpha = resize_lora_model(lora_sd, args.new_rank, save_dtype, args.device, args.dynamic_method, args.dynamic_param, args.verbose) # update metadata if metadata is None: metadata = {} comment = metadata.get("ss_training_comment", "") if not args.dynamic_method: metadata["ss_training_comment"] = f"dimension is resized from {old_dim} to {args.new_rank}; {comment}" metadata["ss_network_dim"] = str(args.new_rank) metadata["ss_network_alpha"] = str(new_alpha) else: metadata["ss_training_comment"] = f"Dynamic resize with {args.dynamic_method}: {args.dynamic_param} from {old_dim}; {comment}" metadata["ss_network_dim"] = 'Dynamic' metadata["ss_network_alpha"] = 'Dynamic' model_hash, legacy_hash = train_util.precalculate_safetensors_hashes(state_dict, metadata) metadata["sshs_model_hash"] = model_hash metadata["sshs_legacy_hash"] = legacy_hash print(f"saving model to: {args.save_to}") save_to_file(args.save_to, state_dict, state_dict, save_dtype, metadata) def setup_parser() -> argparse.ArgumentParser: parser = argparse.ArgumentParser() parser.add_argument("--save_precision", type=str, default=None, choices=[None, "float", "fp16", "bf16"], help="precision in saving, float if omitted / 保存時の精度、未指定時はfloat") parser.add_argument("--new_rank", type=int, default=4, help="Specify rank of output LoRA / 出力するLoRAのrank (dim)") parser.add_argument("--save_to", type=str, default=None, help="destination file name: ckpt or safetensors file / 保存先のファイル名、ckptまたはsafetensors") parser.add_argument("--model", type=str, default=None, help="LoRA model to resize at to new rank: ckpt or safetensors file / 読み込むLoRAモデル、ckptまたはsafetensors") parser.add_argument("--device", type=str, default=None, help="device to use, cuda for GPU / 計算を行うデバイス、cuda でGPUを使う") parser.add_argument("--verbose", action="store_true", help="Display verbose resizing information / rank変更時の詳細情報を出力する") parser.add_argument("--dynamic_method", type=str, default=None, choices=[None, "sv_ratio", "sv_fro", "sv_cumulative"], help="Specify dynamic resizing method, --new_rank is used as a hard limit for max rank") parser.add_argument("--dynamic_param", type=float, default=None, help="Specify target for dynamic reduction") return parser if __name__ == '__main__': parser = setup_parser() args = parser.parse_args() resize(args)