from re import L import cv2 import numpy as np import torch import torch.nn as nn from scipy.ndimage.filters import gaussian_filter from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from internals.pipelines.commons import AbstractPipeline from internals.util.config import get_nsfw_access, get_nsfw_threshold def cosine_distance(image_embeds, text_embeds): normalized_image_embeds = nn.functional.normalize(image_embeds) normalized_text_embeds = nn.functional.normalize(text_embeds) return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) class SafetyChecker: __loaded = False def load(self): if self.__loaded: return self.model = StableDiffusionSafetyCheckerV2.from_pretrained( "CompVis/stable-diffusion-safety-checker", torch_dtype=torch.float16 ).to("cuda") self.__loaded = True def apply(self, pipeline: AbstractPipeline): model = self.model if not get_nsfw_access() else None if model: self.load() if not pipeline: return if hasattr(pipeline, "pipe"): pipeline.pipe.safety_checker = model if hasattr(pipeline, "pipe2"): pipeline.pipe2.safety_checker = model def cosine_distance(image_embeds, text_embeds): normalized_image_embeds = nn.functional.normalize(image_embeds) normalized_text_embeds = nn.functional.normalize(text_embeds) return torch.mm(normalized_image_embeds, normalized_text_embeds.t()) class StableDiffusionSafetyCheckerV2(PreTrainedModel): config_class = CLIPConfig _no_split_modules = ["CLIPEncoderLayer"] def __init__(self, config: CLIPConfig): super().__init__(config) self.vision_model = CLIPVisionModel(config.vision_config) self.visual_projection = nn.Linear( config.vision_config.hidden_size, config.projection_dim, bias=False ) self.concept_embeds = nn.Parameter( torch.ones(17, config.projection_dim), requires_grad=False ) self.special_care_embeds = nn.Parameter( torch.ones(3, config.projection_dim), requires_grad=False ) self.concept_embeds_weights = nn.Parameter(torch.ones(17), requires_grad=False) self.special_care_embeds_weights = nn.Parameter( torch.ones(3), requires_grad=False ) @torch.no_grad() def forward(self, clip_input, images): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 special_cos_dist = ( cosine_distance(image_embeds, self.special_care_embeds) .cpu() .float() .numpy() ) cos_dist = ( cosine_distance(image_embeds, self.concept_embeds).cpu().float().numpy() ) result = [] batch_size = image_embeds.shape[0] for i in range(batch_size): result_img = { "special_scores": {}, "special_care": [], "concept_scores": {}, "bad_concepts": [], } # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 for concept_idx in range(len(special_cos_dist[0])): concept_cos = special_cos_dist[i][concept_idx] concept_threshold = self.special_care_embeds_weights[concept_idx].item() result_img["special_scores"][concept_idx] = round( concept_cos - concept_threshold + adjustment, 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append( {concept_idx, result_img["special_scores"][concept_idx]} ) adjustment = 0.01 for concept_idx in range(len(cos_dist[0])): concept_cos = cos_dist[i][concept_idx] concept_threshold = self.concept_embeds_weights[concept_idx].item() result_img["concept_scores"][concept_idx] = round( concept_cos - concept_threshold + adjustment, 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(concept_idx) result.append(result_img) has_nsfw_concepts = [len(res["bad_concepts"]) > 0 for res in result] # Blur images based on NSFW score # ------------------------------- for idx, has_nsfw_concept in enumerate(has_nsfw_concepts): if any(has_nsfw_concepts) and not get_nsfw_access(): if torch.is_tensor(images) or torch.is_tensor(images[0]): image = images[idx].cpu().numpy().astype(np.float32) image = gaussian_filter(image, sigma=7) # image = cv2.blur(image, (30, 30)) image = torch.from_numpy(image) images[idx] = image else: images[idx] = gaussian_filter(images[idx], sigma=7) if any(has_nsfw_concepts): print("NSFW") return images, has_nsfw_concepts @torch.no_grad() def forward_onnx(self, clip_input: torch.FloatTensor, images: torch.FloatTensor): pooled_output = self.vision_model(clip_input)[1] # pooled_output image_embeds = self.visual_projection(pooled_output) special_cos_dist = cosine_distance(image_embeds, self.special_care_embeds) cos_dist = cosine_distance(image_embeds, self.concept_embeds) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images adjustment = 0.0 special_scores = ( special_cos_dist - self.special_care_embeds_weights + adjustment ) # special_scores = special_scores.round(decimals=3) special_care = torch.any(special_scores > 0, dim=1) special_adjustment = special_care * 0.01 special_adjustment = special_adjustment.unsqueeze(1).expand( -1, cos_dist.shape[1] ) concept_scores = (cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) has_nsfw_concepts = torch.any(concept_scores > 0, dim=1) # images[has_nsfw_concepts] = 0.0 # black image # Blur images based on NSFW score # ------------------------------- if not get_nsfw_access(): image = images[has_nsfw_concepts].cpu().numpy().astype(np.float32) image = gaussian_filter(image, sigma=7) image = torch.from_numpy(image) images[has_nsfw_concepts] = image return images, has_nsfw_concepts