File size: 10,083 Bytes
a3d6c18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import io
import time
import zipfile

import requests
from PIL import Image, ImageColor

from carvekit.utils.image_utils import transparency_paste, add_margin
from carvekit.utils.mask_utils import extract_alpha_channel
from carvekit.web.responses.api import error_dict
from carvekit.api.interface import Interface


def process_remove_bg(
    interface: Interface, params, image, bg, is_json_or_www_encoded=False
):
    """
    Handles a request to the removebg api method

    Args:
        interface: CarveKit interface
        bg: background pil image
        is_json_or_www_encoded: is "json" or "x-www-form-urlencoded" content-type
        image: foreground pil image
        params: parameters
    """
    h, w = image.size
    if h < 2 or w < 2:
        return error_dict("Image is too small. Minimum size 2x2"), 400

    if "size" in params.keys():
        value = params["size"]
        if value == "preview" or value == "small" or value == "regular":
            image.thumbnail((625, 400), resample=3)  # 0.25 mp
        elif value == "medium":
            image.thumbnail((1504, 1000), resample=3)  # 1.5 mp
        elif value == "hd":
            image.thumbnail((2000, 2000), resample=3)  # 2.5 mp
        else:
            image.thumbnail((6250, 4000), resample=3)  # 25 mp

    roi_box = [0, 0, image.size[0], image.size[1]]
    if "type" in params.keys():
        value = params["type"]
        pass

    if "roi" in params.keys():
        value = params["roi"].split(" ")
        if len(value) == 4:
            for i, coord in enumerate(value):
                if "px" in coord:
                    coord = coord.replace("px", "")
                    try:
                        coord = int(coord)
                    except BaseException:
                        return (
                            error_dict(
                                "Error converting roi coordinate string to number!"
                            ),
                            400,
                        )
                    if coord < 0:
                        error_dict("Bad roi coordinate."), 400
                    if (i == 0 or i == 2) and coord > image.size[0]:
                        return (
                            error_dict(
                                "The roi coordinate cannot be larger than the image size."
                            ),
                            400,
                        )
                    elif (i == 1 or i == 3) and coord > image.size[1]:
                        return (
                            error_dict(
                                "The roi coordinate cannot be larger than the image size."
                            ),
                            400,
                        )
                    roi_box[i] = int(coord)
                elif "%" in coord:
                    coord = coord.replace("%", "")
                    try:
                        coord = int(coord)
                    except BaseException:
                        return (
                            error_dict(
                                "Error converting roi coordinate string to number!"
                            ),
                            400,
                        )
                    if coord > 100:
                        return (
                            error_dict("The coordinate cannot be more than 100%"),
                            400,
                        )
                    elif coord < 0:
                        return error_dict("Coordinate cannot be less than 0%"), 400
                    if i == 0 or i == 2:
                        coord = int(image.size[0] * coord / 100)
                    elif i == 1 or i == 3:
                        coord = int(image.size[1] * coord / 100)
                    roi_box[i] = coord
                else:
                    return error_dict("Something wrong with roi coordinates!"), 400

    new_image = image.copy()
    new_image = new_image.crop(roi_box)
    h, w = new_image.size
    if h < 2 or w < 2:
        return error_dict("Image is too small. Minimum size 2x2"), 400
    new_image = interface([new_image])[0]

    scaled = False
    if "scale" in params.keys() and params["scale"] != 100:
        value = params["scale"]
        new_image.thumbnail(
            (int(image.size[0] * value / 100), int(image.size[1] * value / 100)),
            resample=3,
        )
        scaled = True
    if "crop" in params.keys():
        value = params["crop"]
        if value:
            new_image = new_image.crop(new_image.getbbox())
            if "crop_margin" in params.keys():
                crop_margin = params["crop_margin"]
                if "px" in crop_margin:
                    crop_margin = crop_margin.replace("px", "")
                    crop_margin = abs(int(crop_margin))
                    if crop_margin > 500:
                        return (
                            error_dict(
                                "The crop_margin cannot be larger than the original image size."
                            ),
                            400,
                        )
                    new_image = add_margin(
                        new_image,
                        crop_margin,
                        crop_margin,
                        crop_margin,
                        crop_margin,
                        (0, 0, 0, 0),
                    )
                elif "%" in crop_margin:
                    crop_margin = crop_margin.replace("%", "")
                    crop_margin = int(crop_margin)
                    new_image = add_margin(
                        new_image,
                        int(new_image.size[1] * crop_margin / 100),
                        int(new_image.size[0] * crop_margin / 100),
                        int(new_image.size[1] * crop_margin / 100),
                        int(new_image.size[0] * crop_margin / 100),
                        (0, 0, 0, 0),
                    )
        else:
            if "position" in params.keys() and scaled is False:
                value = params["position"]
                if len(value) == 2:
                    new_image = transparency_paste(
                        Image.new("RGBA", image.size),
                        new_image,
                        (
                            int(image.size[0] * value[0] / 100),
                            int(image.size[1] * value[1] / 100),
                        ),
                    )
                else:
                    new_image = transparency_paste(
                        Image.new("RGBA", image.size), new_image, roi_box
                    )
            elif scaled is False:
                new_image = transparency_paste(
                    Image.new("RGBA", image.size), new_image, roi_box
                )

    if "channels" in params.keys():
        value = params["channels"]
        if value == "alpha":
            new_image = extract_alpha_channel(new_image)
        else:
            bg_changed = False
            if "bg_color" in params.keys():
                value = params["bg_color"]
                if len(value) > 0:
                    color = ImageColor.getcolor(value, "RGB")
                    bg = Image.new("RGBA", new_image.size, color)
                    bg = transparency_paste(bg, new_image, (0, 0))
                    new_image = bg.copy()
                    bg_changed = True
            if "bg_image_url" in params.keys() and bg_changed is False:
                value = params["bg_image_url"]
                if len(value) > 0:
                    try:
                        bg = Image.open(io.BytesIO(requests.get(value).content))
                    except BaseException:
                        return error_dict("Error download background image!"), 400
                    bg = bg.resize(new_image.size)
                    bg = bg.convert("RGBA")
                    bg = transparency_paste(bg, new_image, (0, 0))
                    new_image = bg.copy()
                    bg_changed = True
            if not is_json_or_www_encoded:
                if bg and bg_changed is False:
                    bg = bg.resize(new_image.size)
                    bg = bg.convert("RGBA")
                    bg = transparency_paste(bg, new_image, (0, 0))
                    new_image = bg.copy()
    if "format" in params.keys():
        value = params["format"]
        if value == "jpg":
            new_image = new_image.convert("RGB")
            img_io = io.BytesIO()
            new_image.save(img_io, "JPEG", quality=100)
            img_io.seek(0)
            return {"type": "jpg", "data": [img_io, new_image.size]}
        elif value == "zip":
            mask = extract_alpha_channel(new_image)
            mask_buff = io.BytesIO()
            mask.save(mask_buff, "PNG")
            mask_buff.seek(0)
            image_buff = io.BytesIO()
            image.save(image_buff, "JPEG")
            image_buff.seek(0)
            fileobj = io.BytesIO()
            with zipfile.ZipFile(fileobj, "w") as zip_file:
                zip_info = zipfile.ZipInfo(filename="color.jpg")
                zip_info.date_time = time.localtime(time.time())[:6]
                zip_info.compress_type = zipfile.ZIP_DEFLATED
                zip_file.writestr(zip_info, image_buff.getvalue())
                zip_info = zipfile.ZipInfo(filename="alpha.png")
                zip_info.date_time = time.localtime(time.time())[:6]
                zip_info.compress_type = zipfile.ZIP_DEFLATED
                zip_file.writestr(zip_info, mask_buff.getvalue())
            fileobj.seek(0)
            return {"type": "zip", "data": [fileobj.read(), new_image.size]}
        else:
            buff = io.BytesIO()
            new_image.save(buff, "PNG")
            buff.seek(0)
            return {"type": "png", "data": [buff, new_image.size]}
    return (
        error_dict(
            "Something wrong with request or http api. Please, open new issue on Github! This is error in "
            "code."
        ),
        400,
    )