File size: 2,293 Bytes
a3d6c18 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
"""
Source url: https://github.com/Karel911/TRACER
Author: Min Seok Lee and Wooseok Shin
License: Apache License 2.0
"""
import torch.nn as nn
class BasicConv2d(nn.Module):
def __init__(
self,
in_channel,
out_channel,
kernel_size,
stride=(1, 1),
padding=(0, 0),
dilation=(1, 1),
):
super(BasicConv2d, self).__init__()
self.conv = nn.Conv2d(
in_channel,
out_channel,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=False,
)
self.bn = nn.BatchNorm2d(out_channel)
self.selu = nn.SELU()
def forward(self, x):
x = self.conv(x)
x = self.bn(x)
x = self.selu(x)
return x
class DWConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel, dilation, padding):
super(DWConv, self).__init__()
self.out_channel = out_channel
self.DWConv = nn.Conv2d(
in_channel,
out_channel,
kernel_size=kernel,
padding=padding,
groups=in_channel,
dilation=dilation,
bias=False,
)
self.bn = nn.BatchNorm2d(out_channel)
self.selu = nn.SELU()
def forward(self, x):
x = self.DWConv(x)
out = self.selu(self.bn(x))
return out
class DWSConv(nn.Module):
def __init__(self, in_channel, out_channel, kernel, padding, kernels_per_layer):
super(DWSConv, self).__init__()
self.out_channel = out_channel
self.DWConv = nn.Conv2d(
in_channel,
in_channel * kernels_per_layer,
kernel_size=kernel,
padding=padding,
groups=in_channel,
bias=False,
)
self.bn = nn.BatchNorm2d(in_channel * kernels_per_layer)
self.selu = nn.SELU()
self.PWConv = nn.Conv2d(
in_channel * kernels_per_layer, out_channel, kernel_size=1, bias=False
)
self.bn2 = nn.BatchNorm2d(out_channel)
def forward(self, x):
x = self.DWConv(x)
x = self.selu(self.bn(x))
out = self.PWConv(x)
out = self.selu(self.bn2(out))
return out
|