--- license: apache-2.0 base_model: microsoft/beit-base-patch16-224 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: beit-base-patch16-224-OT results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.8225806451612904 --- # beit-base-patch16-224-OT This model is a fine-tuned version of [microsoft/beit-base-patch16-224](https://huggingface.co/microsoft/beit-base-patch16-224) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4801 - Accuracy: 0.8226 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 0.89 | 4 | 1.7603 | 0.1452 | | No log | 2.0 | 9 | 1.6852 | 0.1452 | | 1.7571 | 2.89 | 13 | 1.5655 | 0.1452 | | 1.7571 | 4.0 | 18 | 1.3816 | 0.1452 | | 1.5255 | 4.89 | 22 | 1.2599 | 0.3226 | | 1.5255 | 6.0 | 27 | 1.1534 | 0.4839 | | 1.2245 | 6.89 | 31 | 1.0641 | 0.4839 | | 1.2245 | 8.0 | 36 | 1.0372 | 0.4355 | | 1.0438 | 8.89 | 40 | 0.9988 | 0.4355 | | 1.0438 | 10.0 | 45 | 0.9260 | 0.5161 | | 1.0438 | 10.89 | 49 | 0.9085 | 0.7097 | | 0.9727 | 12.0 | 54 | 0.8433 | 0.7258 | | 0.9727 | 12.89 | 58 | 0.7529 | 0.7742 | | 0.8469 | 14.0 | 63 | 0.7187 | 0.7581 | | 0.8469 | 14.89 | 67 | 0.6806 | 0.7258 | | 0.6908 | 16.0 | 72 | 0.6576 | 0.7581 | | 0.6908 | 16.89 | 76 | 0.5742 | 0.7903 | | 0.6064 | 18.0 | 81 | 0.6447 | 0.7581 | | 0.6064 | 18.89 | 85 | 0.5602 | 0.7742 | | 0.5303 | 20.0 | 90 | 0.4943 | 0.7903 | | 0.5303 | 20.89 | 94 | 0.5304 | 0.7903 | | 0.5303 | 22.0 | 99 | 0.4801 | 0.8226 | | 0.4903 | 22.89 | 103 | 0.4849 | 0.8226 | | 0.4903 | 24.0 | 108 | 0.5710 | 0.7742 | | 0.4261 | 24.89 | 112 | 0.4803 | 0.7903 | | 0.4261 | 26.0 | 117 | 0.5671 | 0.7258 | | 0.4122 | 26.89 | 121 | 0.4585 | 0.8065 | | 0.4122 | 28.0 | 126 | 0.5910 | 0.7097 | | 0.3739 | 28.89 | 130 | 0.5821 | 0.7581 | | 0.3739 | 30.0 | 135 | 0.5329 | 0.7742 | | 0.3739 | 30.89 | 139 | 0.4423 | 0.8226 | | 0.3896 | 32.0 | 144 | 0.4716 | 0.7581 | | 0.3896 | 32.89 | 148 | 0.4786 | 0.7903 | | 0.3472 | 34.0 | 153 | 0.4538 | 0.7903 | | 0.3472 | 34.89 | 157 | 0.4553 | 0.7903 | | 0.3349 | 35.56 | 160 | 0.4528 | 0.7903 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2+cu118 - Datasets 2.16.1 - Tokenizers 0.15.0