--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: train_dir results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9084511507005643 --- # train_dir This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2398 - Accuracy: 0.9085 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.9980 | 246 | 0.2860 | 0.8900 | | No log | 2.0 | 493 | 0.2773 | 0.8893 | | 0.2997 | 2.9980 | 739 | 0.2486 | 0.9049 | | 0.2997 | 3.9919 | 984 | 0.2398 | 0.9085 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3