--- library_name: transformers license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: headlight_11_12_2024_google_vit-base-patch16-224-in21k results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: test args: default metrics: - name: Accuracy type: accuracy value: 0.9039180878716795 --- # headlight_11_12_2024_google_vit-base-patch16-224-in21k This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.2520 - Accuracy: 0.9039 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.2762 | 1.0 | 1969 | 0.2746 | 0.8977 | | 0.2598 | 2.0 | 3938 | 0.2588 | 0.9005 | | 0.2462 | 3.0 | 5907 | 0.2547 | 0.9019 | | 0.2371 | 4.0 | 7876 | 0.2520 | 0.9039 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.3