Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from fastai.vision.all import *
|
3 |
+
import gradio as gr
|
4 |
+
|
5 |
+
|
6 |
+
def is_cat(x): return x[0].isupper()
|
7 |
+
|
8 |
+
learn = load_learner("model.pkl")
|
9 |
+
|
10 |
+
|
11 |
+
im = PILImage.create('dog.jpg')
|
12 |
+
im.thumbnail((192,192))
|
13 |
+
im
|
14 |
+
|
15 |
+
|
16 |
+
|
17 |
+
learn.predict(im)
|
18 |
+
|
19 |
+
|
20 |
+
categories = ("dog","cat")
|
21 |
+
def classify_image(img):
|
22 |
+
pred,idx,probs=learn.predict(img)
|
23 |
+
return dict(zip(categories,map(float,probs)))
|
24 |
+
|
25 |
+
|
26 |
+
classify_image(im)
|
27 |
+
|
28 |
+
image = gr.inputs.Image(shape=(192,192))
|
29 |
+
label= gr.outputs.Label()
|
30 |
+
examples = ['dog.jpg','cat.jpg','example.jpg']
|
31 |
+
|
32 |
+
intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples = examples)
|
33 |
+
intf.launch(inline=False)
|
34 |
+
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
|
39 |
+
|