ArchitSharma commited on
Commit
31b68b1
·
1 Parent(s): 4c1c181

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 285.10 +/- 17.76
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b96cdc74700>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b96cdc74790>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b96cdc74820>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b96cdc748b0>", "_build": "<function ActorCriticPolicy._build at 0x7b96cdc74940>", "forward": "<function ActorCriticPolicy.forward at 0x7b96cdc749d0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b96cdc74a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b96cdc74af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b96cdc74b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b96cdc74c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b96cdc74ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b96cdc74d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b96cdc62900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 10010624, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1690529462169917222, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBSLb62m6U+UmgCPqCDJr/c9qi+DYixPQAAAAAAAAAA8xKZPfg8kD5uC4W+Mp0Sv8bOjr2Dp0++AAAAAAAAAADG0ja+x0ixP85+7r6oHQO/vmM8vgKyFb4AAAAAAAAAAA3Mpz1NHpM+rqvEvpZAH7/uneW9+t+ivgAAAAAAAAAATVE4PSeINj4fBRS+UuD4vp2dXTw4ieO9AAAAAAAAAABmWjK9AaivPxuoO750Gby+cTBDPcNsBjwAAAAAAAAAAACuHz3HUHc/Y39aPQmKNr/AgaA95aB5PQAAAAAAAAAAZjZNO64BlLoobtI7egbDuCwYLjr3rLi3AACAPwAAgD8AojM9qTkYvJ5VKr06RB09qy0HPWHQQz0AAIA/AACAP2YYubwrNaE9RnBlPXZoz76Z8RG+MD7PuwAAAAAAAAAAOu0BPq09Sz/ZZkC9R3whv3NYrj5qGEu+AAAAAAAAAAAzigQ9FKqHujeQjDZ+2jUxLsgCu1mQpbUAAIA/AACAP5qoNL24QeO7wh+zPXCjEj3o8BQ9FzieuwAAgD8AAIA/zVDVO9LaGz6J5QC8LZTZvpmYjr0r6vG9AAAAAAAAAAANIde9aUYKPgvt9D7zEJe+rUEkPsajaT4AAAAAAAAAAMCRjL0/SlE/JAEevpY7WL+73JG9/fnMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0010623999999999079, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQTTSLIgeSMAWyUS/OMAXSUR0C6yrIBaLXMdX2UKGgGR0BzpMWxhUiqaAdLvGgIR0C6yrJpi7TVdX2UKGgGR0BxeTyjHn2aaAdLzWgIR0C6ysjr3TNMdX2UKGgGR0ByvePtD2J0aAdLxWgIR0C6ys2nGbTddX2UKGgGR0BwWzTtsvZiaAdLtmgIR0C6yt1b7j1gdX2UKGgGR0BzgeYJE6T4aAdLxmgIR0C6yuiUHIIXdX2UKGgGR0Bx2AXKr7wbaAdLtmgIR0C6ywvZqVQidX2UKGgGR0Bx/QxJul41aAdL2WgIR0C6yyeTFERbdX2UKGgGR0Bxf/BCUornaAdLx2gIR0C6yy+zQeFMdX2UKGgGR0By2BTgl4TsaAdLxmgIR0C6yzQAQxvfdX2UKGgGR0Bw5O4RVZLaaAdLrmgIR0C6y1UjX4CZdX2UKGgGR0BzHgzi0fHQaAdLu2gIR0C6z1Zgb6xgdX2UKGgGR0Bzj4xBVuJlaAdL0mgIR0C6z14l+mWMdX2UKGgGR0Bx4TSgGr0baAdLpGgIR0C6z2PBN21VdX2UKGgGR0BzYEJKJ2t/aAdLqGgIR0C6z2ogaFVUdX2UKGgGR0BxsAwmE5AAaAdL1GgIR0C6z30K/mDEdX2UKGgGR0BxdZ0gbIcSaAdLv2gIR0C6z4MvmHQAdX2UKGgGR0ByCKVTrE9/aAdLw2gIR0C6z4TH4oJBdX2UKGgGR0By1KCqZML4aAdLymgIR0C6z6dZ3cHodX2UKGgGR0Bxp4OMERraaAdLumgIR0C6z6l2vB8AdX2UKGgGR0ByXWr1dxACaAdLuWgIR0C6z7PRVp9JdX2UKGgGR0BymFLK3d9EaAdL6WgIR0C6z88I3R5UdX2UKGgGR0ByToaESM99aAdLnWgIR0C6z9FQdjoZdX2UKGgGR0Bx3QaXKKYRaAdLrGgIR0C6z+my1NQCdX2UKGgGR0BzaRum78NyaAdL2GgIR0C6z/z9S/CZdX2UKGgGR0BvYcqnWJ7+aAdLwGgIR0C60Abux8lYdX2UKGgGR0Bxqyb+cYqHaAdLtmgIR0C60BvOQhfTdX2UKGgGR0Bxy1wo9cKPaAdLsmgIR0C60CbtAs06dX2UKGgGR0BzGg8V58jSaAdLpmgIR0C60CWecx0udX2UKGgGR0ByObI4lyBDaAdLuWgIR0C60CfSlWOqdX2UKGgGR0BuwxUvPC2uaAdLqWgIR0C60DwbIcR2dX2UKGgGR0ByF4IUrTYvaAdL0WgIR0C60E9MoMKDdX2UKGgGR0By4qCZnctYaAdLzmgIR0C60G504iosdX2UKGgGR0Bz5habF0gbaAdL3mgIR0C60H/USZjQdX2UKGgGR0ByZ+PZIxxlaAdLn2gIR0C60IY5Lh73dX2UKGgGR0BzfW4I8hcJaAdLxmgIR0C60IrDAJswdX2UKGgGR0BxdokC3gDSaAdLx2gIR0C60I3TiKixdX2UKGgGR0BzjChSLqD9aAdLvWgIR0C60I1Id2gWdX2UKGgGR0Bx+c/u9eyBaAdLx2gIR0C60LQXEZR9dX2UKGgGR0BzkBdRiw0PaAdLyWgIR0C60M/fTCtSdX2UKGgGR0Bycmj7ALy+aAdLuWgIR0C60NkM5OrRdX2UKGgGR0BuhupMpPRBaAdLzmgIR0C60ObeQ+2WdX2UKGgGR0BwGw2/BWPtaAdLqmgIR0C60OmUOd5IdX2UKGgGR0BweO4x1xKhaAdLu2gIR0C60P446wMZdX2UKGgGR0BxmDDaXa8IaAdLxWgIR0C60P51Ng0CdX2UKGgGR0BxBVFI/Z/TaAdLw2gIR0C60QmETQE7dX2UKGgGR0BywFuwX668aAdLsWgIR0C60ScNhE0BdX2UKGgGR0BytwstkFwDaAdLx2gIR0C60S6ZYxL1dX2UKGgGR0Bx5Bfv4M4MaAdLuWgIR0C60VyC8OCodX2UKGgGR0Bw3xtCRfWuaAdLrmgIR0C60Wm5UcXFdX2UKGgGR0BwvizJIUaiaAdLtmgIR0C60W5OJtSAdX2UKGgGR0Bw1EXsPatcaAdLr2gIR0C60XGX1J18dX2UKGgGR0Bx0zfsNUfgaAdLwWgIR0C60ZEKiO/+dX2UKGgGR0By308bJfY0aAdLxWgIR0C60Zaya/h3dX2UKGgGR0BxvxrpJPIoaAdLqGgIR0C60ey9mHxjdX2UKGgGR0BzItQLux8laAdL1WgIR0C60fF49ovjdX2UKGgGR0ByZTyVfNRnaAdLwmgIR0C60fiauwHJdX2UKGgGR0Bw27MINVinaAdLvmgIR0C60gJJ04ipdX2UKGgGR0Bx7W+pOvdNaAdLwmgIR0C60h+iBXjmdX2UKGgGR0ByWpIczZYgaAdLnmgIR0C60jGexwAEdX2UKGgGR0BwkWcy31BdaAdLx2gIR0C60kHuy/sWdX2UKGgGR0Byshid8RcvaAdLr2gIR0C60kX0XgtOdX2UKGgGR0BydsFINEw4aAdLzmgIR0C60k7ALy+YdX2UKGgGR0Bx//rUsnRcaAdLyWgIR0C60lEvkBCEdX2UKGgGR0Bxv5CE6DGtaAdLwmgIR0C60psC5mROdX2UKGgGR0B0Rpn+Q2deaAdLvGgIR0C60p7NGEwndX2UKGgGR0B0e3qkdmxuaAdLvGgIR0C60qNoN/e+dX2UKGgGR0B0GGP6sQumaAdL0WgIR0C60sm9pRGddX2UKGgGR0BxxanaWX1KaAdLw2gIR0C60tsPz4DcdX2UKGgGR0BzicQUYbbUaAdL2GgIR0C60vj5CWu6dX2UKGgGR0BxB9UIcBEKaAdLrGgIR0C60w+3+dbxdX2UKGgGR0Bwm8gwGnn/aAdLs2gIR0C60yrsv7FbdX2UKGgGR0Bw4XjtG/etaAdLwGgIR0C60zAYUFjedX2UKGgGR0BvweXiR4hVaAdLzWgIR0C601SntOVPdX2UKGgGR0BwIZlVcUudaAdLrWgIR0C601cKb8WLdX2UKGgGR0BwtwSYgJTmaAdLumgIR0C601pf6XSjdX2UKGgGR0Bx7pF/hESeaAdLsWgIR0C60293OfNBdX2UKGgGR0BwvPHdXT3JaAdLs2gIR0C603bxusLfdX2UKGgGR0Byn4KhL5ARaAdLtGgIR0C604GrbQC0dX2UKGgGR0BxoUZXMhX9aAdLxGgIR0C6052/FirldX2UKGgGR0BxnnHZK3/haAdLsWgIR0C608LRSgoPdX2UKGgGR0BxKfBN21UmaAdLs2gIR0C608hI4EOidX2UKGgGR0B0AbDWK/EgaAdLumgIR0C608nyiEg4dX2UKGgGR0BxWb6SDAaeaAdLu2gIR0C60+mR3eN2dX2UKGgGR0Bzmtn5BTn8aAdLs2gIR0C60+wJokAxdX2UKGgGR0B0MG+Eh7mdaAdLv2gIR0C61A/H5rP/dX2UKGgGR0ByHNZuAI6baAdLrmgIR0C61CE8A7xNdX2UKGgGR0Bx/NZ0Syt3aAdLxWgIR0C61CaKpDNRdX2UKGgGR0BzxaiN83MqaAdLx2gIR0C61Dn1nM+vdX2UKGgGR0Bw9TCaZx7zaAdLt2gIR0C61EFj/dZadX2UKGgGR0BxJtQhwEQoaAdLvmgIR0C61Er+kxh2dX2UKGgGR0BxOzC4z7/GaAdLrGgIR0C61EsXvYvndX2UKGgGR0Bx6WP3i704aAdLvmgIR0C61E0CFK02dX2UKGgGR0By2+iRGMGYaAdLr2gIR0C61FRtHhCMdX2UKGgGR0BySj1xsEaEaAdL0GgIR0C61GyMLncMdX2UKGgGR0BxRmerdWQwaAdLvGgIR0C61HSo86mwdX2UKGgGR0Bwt2SA6MisaAdLsWgIR0C61IpzcRDkdX2UKGgGR0Bw1O9nK4hEaAdLq2gIR0C61Ip/9YOldX2UKGgGR0BF4KaoddVvaAdLkWgIR0C61I59iMHbdX2UKGgGR0Bxo18kUsWgaAdLumgIR0C61Jjr7fpEdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 2444, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023", "Python": "3.10.6", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
ppo-LunarLander-v2-Archit.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a96cec1b43cebb6b26b1e749ee1627d94429ff9d6fc6ce488ec6d711695f2121
3
+ size 146625
ppo-LunarLander-v2-Archit/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
ppo-LunarLander-v2-Archit/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b96cdc74700>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b96cdc74790>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b96cdc74820>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b96cdc748b0>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b96cdc74940>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b96cdc749d0>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b96cdc74a60>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b96cdc74af0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b96cdc74b80>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b96cdc74c10>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b96cdc74ca0>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b96cdc74d30>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b96cdc62900>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 10010624,
25
+ "_total_timesteps": 10000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1690529462169917222,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMBSLb62m6U+UmgCPqCDJr/c9qi+DYixPQAAAAAAAAAA8xKZPfg8kD5uC4W+Mp0Sv8bOjr2Dp0++AAAAAAAAAADG0ja+x0ixP85+7r6oHQO/vmM8vgKyFb4AAAAAAAAAAA3Mpz1NHpM+rqvEvpZAH7/uneW9+t+ivgAAAAAAAAAATVE4PSeINj4fBRS+UuD4vp2dXTw4ieO9AAAAAAAAAABmWjK9AaivPxuoO750Gby+cTBDPcNsBjwAAAAAAAAAAACuHz3HUHc/Y39aPQmKNr/AgaA95aB5PQAAAAAAAAAAZjZNO64BlLoobtI7egbDuCwYLjr3rLi3AACAPwAAgD8AojM9qTkYvJ5VKr06RB09qy0HPWHQQz0AAIA/AACAP2YYubwrNaE9RnBlPXZoz76Z8RG+MD7PuwAAAAAAAAAAOu0BPq09Sz/ZZkC9R3whv3NYrj5qGEu+AAAAAAAAAAAzigQ9FKqHujeQjDZ+2jUxLsgCu1mQpbUAAIA/AACAP5qoNL24QeO7wh+zPXCjEj3o8BQ9FzieuwAAgD8AAIA/zVDVO9LaGz6J5QC8LZTZvpmYjr0r6vG9AAAAAAAAAAANIde9aUYKPgvt9D7zEJe+rUEkPsajaT4AAAAAAAAAAMCRjL0/SlE/JAEevpY7WL+73JG9/fnMvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.0010623999999999079,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHQTTSLIgeSMAWyUS/OMAXSUR0C6yrIBaLXMdX2UKGgGR0BzpMWxhUiqaAdLvGgIR0C6yrJpi7TVdX2UKGgGR0BxeTyjHn2aaAdLzWgIR0C6ysjr3TNMdX2UKGgGR0ByvePtD2J0aAdLxWgIR0C6ys2nGbTddX2UKGgGR0BwWzTtsvZiaAdLtmgIR0C6yt1b7j1gdX2UKGgGR0BzgeYJE6T4aAdLxmgIR0C6yuiUHIIXdX2UKGgGR0Bx2AXKr7wbaAdLtmgIR0C6ywvZqVQidX2UKGgGR0Bx/QxJul41aAdL2WgIR0C6yyeTFERbdX2UKGgGR0Bxf/BCUornaAdLx2gIR0C6yy+zQeFMdX2UKGgGR0By2BTgl4TsaAdLxmgIR0C6yzQAQxvfdX2UKGgGR0Bw5O4RVZLaaAdLrmgIR0C6y1UjX4CZdX2UKGgGR0BzHgzi0fHQaAdLu2gIR0C6z1Zgb6xgdX2UKGgGR0Bzj4xBVuJlaAdL0mgIR0C6z14l+mWMdX2UKGgGR0Bx4TSgGr0baAdLpGgIR0C6z2PBN21VdX2UKGgGR0BzYEJKJ2t/aAdLqGgIR0C6z2ogaFVUdX2UKGgGR0BxsAwmE5AAaAdL1GgIR0C6z30K/mDEdX2UKGgGR0BxdZ0gbIcSaAdLv2gIR0C6z4MvmHQAdX2UKGgGR0ByCKVTrE9/aAdLw2gIR0C6z4TH4oJBdX2UKGgGR0By1KCqZML4aAdLymgIR0C6z6dZ3cHodX2UKGgGR0Bxp4OMERraaAdLumgIR0C6z6l2vB8AdX2UKGgGR0ByXWr1dxACaAdLuWgIR0C6z7PRVp9JdX2UKGgGR0BymFLK3d9EaAdL6WgIR0C6z88I3R5UdX2UKGgGR0ByToaESM99aAdLnWgIR0C6z9FQdjoZdX2UKGgGR0Bx3QaXKKYRaAdLrGgIR0C6z+my1NQCdX2UKGgGR0BzaRum78NyaAdL2GgIR0C6z/z9S/CZdX2UKGgGR0BvYcqnWJ7+aAdLwGgIR0C60Abux8lYdX2UKGgGR0Bxqyb+cYqHaAdLtmgIR0C60BvOQhfTdX2UKGgGR0Bxy1wo9cKPaAdLsmgIR0C60CbtAs06dX2UKGgGR0BzGg8V58jSaAdLpmgIR0C60CWecx0udX2UKGgGR0ByObI4lyBDaAdLuWgIR0C60CfSlWOqdX2UKGgGR0BuwxUvPC2uaAdLqWgIR0C60DwbIcR2dX2UKGgGR0ByF4IUrTYvaAdL0WgIR0C60E9MoMKDdX2UKGgGR0By4qCZnctYaAdLzmgIR0C60G504iosdX2UKGgGR0Bz5habF0gbaAdL3mgIR0C60H/USZjQdX2UKGgGR0ByZ+PZIxxlaAdLn2gIR0C60IY5Lh73dX2UKGgGR0BzfW4I8hcJaAdLxmgIR0C60IrDAJswdX2UKGgGR0BxdokC3gDSaAdLx2gIR0C60I3TiKixdX2UKGgGR0BzjChSLqD9aAdLvWgIR0C60I1Id2gWdX2UKGgGR0Bx+c/u9eyBaAdLx2gIR0C60LQXEZR9dX2UKGgGR0BzkBdRiw0PaAdLyWgIR0C60M/fTCtSdX2UKGgGR0Bycmj7ALy+aAdLuWgIR0C60NkM5OrRdX2UKGgGR0BuhupMpPRBaAdLzmgIR0C60ObeQ+2WdX2UKGgGR0BwGw2/BWPtaAdLqmgIR0C60OmUOd5IdX2UKGgGR0BweO4x1xKhaAdLu2gIR0C60P446wMZdX2UKGgGR0BxmDDaXa8IaAdLxWgIR0C60P51Ng0CdX2UKGgGR0BxBVFI/Z/TaAdLw2gIR0C60QmETQE7dX2UKGgGR0BywFuwX668aAdLsWgIR0C60ScNhE0BdX2UKGgGR0BytwstkFwDaAdLx2gIR0C60S6ZYxL1dX2UKGgGR0Bx5Bfv4M4MaAdLuWgIR0C60VyC8OCodX2UKGgGR0Bw3xtCRfWuaAdLrmgIR0C60Wm5UcXFdX2UKGgGR0BwvizJIUaiaAdLtmgIR0C60W5OJtSAdX2UKGgGR0Bw1EXsPatcaAdLr2gIR0C60XGX1J18dX2UKGgGR0Bx0zfsNUfgaAdLwWgIR0C60ZEKiO/+dX2UKGgGR0By308bJfY0aAdLxWgIR0C60Zaya/h3dX2UKGgGR0BxvxrpJPIoaAdLqGgIR0C60ey9mHxjdX2UKGgGR0BzItQLux8laAdL1WgIR0C60fF49ovjdX2UKGgGR0ByZTyVfNRnaAdLwmgIR0C60fiauwHJdX2UKGgGR0Bw27MINVinaAdLvmgIR0C60gJJ04ipdX2UKGgGR0Bx7W+pOvdNaAdLwmgIR0C60h+iBXjmdX2UKGgGR0ByWpIczZYgaAdLnmgIR0C60jGexwAEdX2UKGgGR0BwkWcy31BdaAdLx2gIR0C60kHuy/sWdX2UKGgGR0Byshid8RcvaAdLr2gIR0C60kX0XgtOdX2UKGgGR0BydsFINEw4aAdLzmgIR0C60k7ALy+YdX2UKGgGR0Bx//rUsnRcaAdLyWgIR0C60lEvkBCEdX2UKGgGR0Bxv5CE6DGtaAdLwmgIR0C60psC5mROdX2UKGgGR0B0Rpn+Q2deaAdLvGgIR0C60p7NGEwndX2UKGgGR0B0e3qkdmxuaAdLvGgIR0C60qNoN/e+dX2UKGgGR0B0GGP6sQumaAdL0WgIR0C60sm9pRGddX2UKGgGR0BxxanaWX1KaAdLw2gIR0C60tsPz4DcdX2UKGgGR0BzicQUYbbUaAdL2GgIR0C60vj5CWu6dX2UKGgGR0BxB9UIcBEKaAdLrGgIR0C60w+3+dbxdX2UKGgGR0Bwm8gwGnn/aAdLs2gIR0C60yrsv7FbdX2UKGgGR0Bw4XjtG/etaAdLwGgIR0C60zAYUFjedX2UKGgGR0BvweXiR4hVaAdLzWgIR0C601SntOVPdX2UKGgGR0BwIZlVcUudaAdLrWgIR0C601cKb8WLdX2UKGgGR0BwtwSYgJTmaAdLumgIR0C601pf6XSjdX2UKGgGR0Bx7pF/hESeaAdLsWgIR0C60293OfNBdX2UKGgGR0BwvPHdXT3JaAdLs2gIR0C603bxusLfdX2UKGgGR0Byn4KhL5ARaAdLtGgIR0C604GrbQC0dX2UKGgGR0BxoUZXMhX9aAdLxGgIR0C6052/FirldX2UKGgGR0BxnnHZK3/haAdLsWgIR0C608LRSgoPdX2UKGgGR0BxKfBN21UmaAdLs2gIR0C608hI4EOidX2UKGgGR0B0AbDWK/EgaAdLumgIR0C608nyiEg4dX2UKGgGR0BxWb6SDAaeaAdLu2gIR0C60+mR3eN2dX2UKGgGR0Bzmtn5BTn8aAdLs2gIR0C60+wJokAxdX2UKGgGR0B0MG+Eh7mdaAdLv2gIR0C61A/H5rP/dX2UKGgGR0ByHNZuAI6baAdLrmgIR0C61CE8A7xNdX2UKGgGR0Bx/NZ0Syt3aAdLxWgIR0C61CaKpDNRdX2UKGgGR0BzxaiN83MqaAdLx2gIR0C61Dn1nM+vdX2UKGgGR0Bw9TCaZx7zaAdLt2gIR0C61EFj/dZadX2UKGgGR0BxJtQhwEQoaAdLvmgIR0C61Er+kxh2dX2UKGgGR0BxOzC4z7/GaAdLrGgIR0C61EsXvYvndX2UKGgGR0Bx6WP3i704aAdLvmgIR0C61E0CFK02dX2UKGgGR0By2+iRGMGYaAdLr2gIR0C61FRtHhCMdX2UKGgGR0BySj1xsEaEaAdL0GgIR0C61GyMLncMdX2UKGgGR0BxRmerdWQwaAdLvGgIR0C61HSo86mwdX2UKGgGR0Bwt2SA6MisaAdLsWgIR0C61IpzcRDkdX2UKGgGR0Bw1O9nK4hEaAdLq2gIR0C61Ip/9YOldX2UKGgGR0BF4KaoddVvaAdLkWgIR0C61I59iMHbdX2UKGgGR0Bxo18kUsWgaAdLumgIR0C61Jjr7fpEdWUu"
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 2444,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 16,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 64,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
ppo-LunarLander-v2-Archit/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fe59f3d9b0316da43b95f70d8e91de6ade5099cc0b5d0af545f3160fabcc793a
3
+ size 87929
ppo-LunarLander-v2-Archit/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54f3133226ca6c38ef65453e3d03cdc9d46bd749f72e6a7ebf2af09a06726547
3
+ size 43329
ppo-LunarLander-v2-Archit/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2-Archit/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.109+-x86_64-with-glibc2.35 # 1 SMP Fri Jun 9 10:57:30 UTC 2023
2
+ - Python: 3.10.6
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.0.1+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.22.4
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (153 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 285.0959679, "std_reward": 17.760597188753945, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-07-28T09:47:57.327692"}