{"policy_class": {":type:": "", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f79b5820b00>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1682034945957005092, "learning_rate": 0.0009, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOS9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/TX2/SH/LkoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAgdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/gdLKPgtUwbs3zg4/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAUAijP4W1yz+0oMW+uW7Gv4NEuj8f6Ny/P+rFP3K9tr9igis/YYe1PwjJkj85dzm9lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACB0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2B0so+C1TBuzfODj+dI5M9MPNtunEAeD2UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]\n [ 0.39613727 -0.00589991 0.5578341 ]]", "desired_goal": "[[ 1.2736912 1.591477 -0.3859917 ]\n [-1.550254 1.4552158 -1.7258338 ]\n [ 1.5462111 -1.4276564 0.66995823]\n [ 1.4181939 1.14676 -0.04527972]]", "observation": "[[ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]\n [ 0.39613727 -0.00589991 0.5578341 0.07184527 -0.00090771 0.0605473 ]]"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEBAQGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAzX33PLUYeDxoDoU+c4QUPkT5DT7RUkg+QDTFPJJWIT08LEg9QhomvOWRoT1Rbno+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.03021135 0.01514261 0.25987554]\n [ 0.1450365 0.13864619 0.19562842]\n [ 0.02407277 0.0393892 0.04887031]\n [-0.0101381 0.07889155 0.24456145]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIIojzcAKzAcCUhpRSlIwBbJRLMowBdJRHQLYxsW6K+BZ1fZQoaAZoCWgPQwh3+GuyRn38v5SGlFKUaBVLMmgWR0C2MY6qwQlKdX2UKGgGaAloD0MI7GrylNV097+UhpRSlGgVSzJoFkdAtjFrm1YyPHV9lChoBmgJaA9DCOqURzfCIgTAlIaUUpRoFUsyaBZHQLYxSMfA9FF1fZQoaAZoCWgPQwjSiQRTzewFwJSGlFKUaBVLMmgWR0C2MkhInSfEdX2UKGgGaAloD0MIk8MnnUhw87+UhpRSlGgVSzJoFkdAtjIlcIJJG3V9lChoBmgJaA9DCBA//z14TQDAlIaUUpRoFUsyaBZHQLYyAmaH9FZ1fZQoaAZoCWgPQwghlWJH41Djv5SGlFKUaBVLMmgWR0C2Md+clPaddX2UKGgGaAloD0MIPXyZKELq6b+UhpRSlGgVSzJoFkdAtjLiIxgy/XV9lChoBmgJaA9DCDm0yHa+nwTAlIaUUpRoFUsyaBZHQLYyv1tO2y91fZQoaAZoCWgPQwibrie6Lnzvv5SGlFKUaBVLMmgWR0C2MpxPTG5udX2UKGgGaAloD0MIGJRpNLkY5r+UhpRSlGgVSzJoFkdAtjJ5fiPyTnV9lChoBmgJaA9DCKlNnNzv0ADAlIaUUpRoFUsyaBZHQLYzdonKGL11fZQoaAZoCWgPQwhyGMxfIfMKwJSGlFKUaBVLMmgWR0C2M1O36Q/5dX2UKGgGaAloD0MI1XlU/N/RCsCUhpRSlGgVSzJoFkdAtjMwpLEk0XV9lChoBmgJaA9DCCnrNxPThd+/lIaUUpRoFUsyaBZHQLYzDciGFi91fZQoaAZoCWgPQwgGS3UBL/P1v5SGlFKUaBVLMmgWR0C2NB4cWCVbdX2UKGgGaAloD0MIPZzAdFp3+b+UhpRSlGgVSzJoFkdAtjP7VI7NjnV9lChoBmgJaA9DCKhxb37DxOW/lIaUUpRoFUsyaBZHQLYz2Ds+mnB1fZQoaAZoCWgPQwj1ZWmn5nLuv5SGlFKUaBVLMmgWR0C2M7VWXC0odX2UKGgGaAloD0MI5e0IpwVv8r+UhpRSlGgVSzJoFkdAtjSzCDVYp3V9lChoBmgJaA9DCMjT8gNXee2/lIaUUpRoFUsyaBZHQLY0kDw6QvJ1fZQoaAZoCWgPQwgt7GmHv6bsv5SGlFKUaBVLMmgWR0C2NG0xdpqRdX2UKGgGaAloD0MI0A8jhEc7B8CUhpRSlGgVSzJoFkdAtjRKPYFqz3V9lChoBmgJaA9DCPp6vma5LPu/lIaUUpRoFUsyaBZHQLY1WIEKVpt1fZQoaAZoCWgPQwhfRrHc0mr7v5SGlFKUaBVLMmgWR0C2NTWxptaZdX2UKGgGaAloD0MI1Ce5wyYy4r+UhpRSlGgVSzJoFkdAtjUSmALApXV9lChoBmgJaA9DCBsN4C2QwAPAlIaUUpRoFUsyaBZHQLY077OE/Sp1fZQoaAZoCWgPQwhZ/RGGAcv8v5SGlFKUaBVLMmgWR0C2Ne2ecx0udX2UKGgGaAloD0MIE0TdByB1/b+UhpRSlGgVSzJoFkdAtjXK0+kgwHV9lChoBmgJaA9DCMTSwI9q2PG/lIaUUpRoFUsyaBZHQLY1p/6O5rh1fZQoaAZoCWgPQwhC6+HLRJH3v5SGlFKUaBVLMmgWR0C2NYUnXumadX2UKGgGaAloD0MISl8IOe//AsCUhpRSlGgVSzJoFkdAtjZ+I42jwnV9lChoBmgJaA9DCC9SKAtfXwTAlIaUUpRoFUsyaBZHQLY2W0Bfa6B1fZQoaAZoCWgPQwiIg4QoX9Dlv5SGlFKUaBVLMmgWR0C2NjgdjoZAdX2UKGgGaAloD0MIKQmJtI0/6L+UhpRSlGgVSzJoFkdAtjYVKXfIjnV9lChoBmgJaA9DCLH6IwwDFvK/lIaUUpRoFUsyaBZHQLY3E2OyVwB1fZQoaAZoCWgPQwhmMbH5uLbxv5SGlFKUaBVLMmgWR0C2NvCJKraNdX2UKGgGaAloD0MIEce6uI0G37+UhpRSlGgVSzJoFkdAtjbNeokzGnV9lChoBmgJaA9DCOPfZ1w4ENC/lIaUUpRoFUsyaBZHQLY2qrUb1h91fZQoaAZoCWgPQwgSnzvB/isDwJSGlFKUaBVLMmgWR0C2N6Z++dsjdX2UKGgGaAloD0MIEcXkDTCz97+UhpRSlGgVSzJoFkdAtjeDrWy1NXV9lChoBmgJaA9DCCxGXWvv0/m/lIaUUpRoFUsyaBZHQLY3YKJl8PZ1fZQoaAZoCWgPQwhkrgyqDc7mv5SGlFKUaBVLMmgWR0C2Nz265Gz9dX2UKGgGaAloD0MIalA0D2BR+b+UhpRSlGgVSzJoFkdAtjg3Pv8ZUHV9lChoBmgJaA9DCOeMKO0NPvq/lIaUUpRoFUsyaBZHQLY4FE5Qxet1fZQoaAZoCWgPQwivQzUlWYf0v5SGlFKUaBVLMmgWR0C2N/ExEfDDdX2UKGgGaAloD0MIg92wbVGm87+UhpRSlGgVSzJoFkdAtjfOakRBeHV9lChoBmgJaA9DCHxgx3+BoArAlIaUUpRoFUsyaBZHQLY44QmeDnN1fZQoaAZoCWgPQwj+CwQBMjQAwJSGlFKUaBVLMmgWR0C2OL6j8DSxdX2UKGgGaAloD0MItww4S8kSBsCUhpRSlGgVSzJoFkdAtjibkGRmsnV9lChoBmgJaA9DCMReKGA7GPK/lIaUUpRoFUsyaBZHQLY4eL3bmEJ1fZQoaAZoCWgPQwhfsvFgi93yv5SGlFKUaBVLMmgWR0C2OXWjsUqQdX2UKGgGaAloD0MIPNnNjH609r+UhpRSlGgVSzJoFkdAtjlS2DxsmHV9lChoBmgJaA9DCNZVgVoMvgLAlIaUUpRoFUsyaBZHQLY5L9U0elt1fZQoaAZoCWgPQwgcKVsk7Yb4v5SGlFKUaBVLMmgWR0C2OQ0EX+ERdX2UKGgGaAloD0MIZqAy/n1G+7+UhpRSlGgVSzJoFkdAtjoeYBvJinV9lChoBmgJaA9DCKFI93MKsvK/lIaUUpRoFUsyaBZHQLY5+6XSjQB1fZQoaAZoCWgPQwh1zHnGviTzv5SGlFKUaBVLMmgWR0C2OditJWeZdX2UKGgGaAloD0MIhe/9Ddrr97+UhpRSlGgVSzJoFkdAtjm2VY6nznV9lChoBmgJaA9DCAQ3UrZIGvm/lIaUUpRoFUsyaBZHQLY6x8lHBk91fZQoaAZoCWgPQwiSk4lbBXH5v5SGlFKUaBVLMmgWR0C2OqVqzqrzdX2UKGgGaAloD0MIkWKARBOo4r+UhpRSlGgVSzJoFkdAtjqCQxN7B3V9lChoBmgJaA9DCJIIjWDjeu2/lIaUUpRoFUsyaBZHQLY6X20iQkp1fZQoaAZoCWgPQwgvppnudZL1v5SGlFKUaBVLMmgWR0C2O2seXAuadX2UKGgGaAloD0MIBeCfUiUK/b+UhpRSlGgVSzJoFkdAtjtIstkFwHV9lChoBmgJaA9DCAFO7+L9uO2/lIaUUpRoFUsyaBZHQLY7JapPykN1fZQoaAZoCWgPQwgeU3dlFwz7v5SGlFKUaBVLMmgWR0C2OwLdFfAsdX2UKGgGaAloD0MIYDyDhv7J/r+UhpRSlGgVSzJoFkdAtjwGdQO4G3V9lChoBmgJaA9DCO4jtybdlt6/lIaUUpRoFUsyaBZHQLY746mwaBJ1fZQoaAZoCWgPQwgHCryTTy8EwJSGlFKUaBVLMmgWR0C2O8Cm/FisdX2UKGgGaAloD0MICtrk8Ekn57+UhpRSlGgVSzJoFkdAtjud0YCQtHV9lChoBmgJaA9DCLK9FvTeWPa/lIaUUpRoFUsyaBZHQLY8md1+y7h1fZQoaAZoCWgPQwhKDW0ANqDgv5SGlFKUaBVLMmgWR0C2PHcHfMwDdX2UKGgGaAloD0MIokJ1c/G367+UhpRSlGgVSzJoFkdAtjxT52yLRHV9lChoBmgJaA9DCAMixJWzNwLAlIaUUpRoFUsyaBZHQLY8MQ+EAYJ1fZQoaAZoCWgPQwjZeoZwzLLov5SGlFKUaBVLMmgWR0C2PSxSDRMOdX2UKGgGaAloD0MIdy6M9KL25r+UhpRSlGgVSzJoFkdAtj0Jat9x63V9lChoBmgJaA9DCL4uw3+6Qfa/lIaUUpRoFUsyaBZHQLY85jnV5KR1fZQoaAZoCWgPQwjz5nCt9jD4v5SGlFKUaBVLMmgWR0C2PMNtIkJKdX2UKGgGaAloD0MIeedQhqoY6L+UhpRSlGgVSzJoFkdAtj3BYmsvI3V9lChoBmgJaA9DCKnZA63AUP2/lIaUUpRoFUsyaBZHQLY9no0ygwp1fZQoaAZoCWgPQwiTbkvkgjPsv5SGlFKUaBVLMmgWR0C2PXtrTH81dX2UKGgGaAloD0MIh+C4jJsa0r+UhpRSlGgVSzJoFkdAtj1Yiliz9nV9lChoBmgJaA9DCNUI/Uy9Lv6/lIaUUpRoFUsyaBZHQLY+VT4tYjl1fZQoaAZoCWgPQwhJLZRMTm3mv5SGlFKUaBVLMmgWR0C2PjJwfhdddX2UKGgGaAloD0MIQQ3fwroRBcCUhpRSlGgVSzJoFkdAtj4PYh+vyXV9lChoBmgJaA9DCLyxoDAoU+m/lIaUUpRoFUsyaBZHQLY97JSBK+V1fZQoaAZoCWgPQwitpuuJrgv1v5SGlFKUaBVLMmgWR0C2PuuZ9d/sdX2UKGgGaAloD0MID0OrkzNU+7+UhpRSlGgVSzJoFkdAtj7IzvZyuXV9lChoBmgJaA9DCGPyBpj5DgHAlIaUUpRoFUsyaBZHQLY+pcsDnvF1fZQoaAZoCWgPQwjW5v9VRw73v5SGlFKUaBVLMmgWR0C2PoMGHHmzdX2UKGgGaAloD0MIaxFRTN6A/L+UhpRSlGgVSzJoFkdAtj971YhdMXV9lChoBmgJaA9DCIElV7H4bQDAlIaUUpRoFUsyaBZHQLY/WOmixml1fZQoaAZoCWgPQwgE4+DSMWflv5SGlFKUaBVLMmgWR0C2PzXDR+jNdX2UKGgGaAloD0MItK88SE8xBMCUhpRSlGgVSzJoFkdAtj8S1Cw8n3V9lChoBmgJaA9DCFjmrboOlfK/lIaUUpRoFUsyaBZHQLZAJNeMQ3B1fZQoaAZoCWgPQwh551CGqlj5v5SGlFKUaBVLMmgWR0C2QAIHLRrrdX2UKGgGaAloD0MI0QMfgxWn/r+UhpRSlGgVSzJoFkdAtj/faIvalHV9lChoBmgJaA9DCJtXdVYLLPy/lIaUUpRoFUsyaBZHQLY/vJDVpbl1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVUgMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZSMAUOUdJRSlIwEaGlnaJRoHSiWDAAAAAAAAAAAACBBAAAgQQAAIEGUaBVLA4WUaCB0lFKUjA1ib3VuZGVkX2JlbG93lGgdKJYDAAAAAAAAAAEBAZRoEowCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZRoIHSUUpSMDWJvdW5kZWRfYWJvdmWUaB0olgMAAAAAAAAAAQEBlGgsSwOFlGggdJRSlIwKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFUsDhZRoIHSUUpRoI2gdKJYMAAAAAAAAAAAAIEEAACBBAAAgQZRoFUsDhZRoIHSUUpRoKGgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoMmgdKJYDAAAAAAAAAAEBAZRoLEsDhZRoIHSUUpRoN051YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgVaBhLBoWUaBpoHSiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBVLBoWUaCB0lFKUaCNoHSiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBVLBoWUaCB0lFKUaChoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDJoHSiWBgAAAAAAAAABAQEBAQGUaCxLBoWUaCB0lFKUaDdOdWJ1aBhOaBBOaDdOdWIu", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVbQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaApLA4WUjAFDlHSUUpSMBGhpZ2iUaBIolgwAAAAAAAAAAACAPwAAgD8AAIA/lGgKSwOFlGgVdJRSlIwNYm91bmRlZF9iZWxvd5RoEiiWAwAAAAAAAAABAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYDAAAAAAAAAAEBAZRoIUsDhZRoFXSUUpSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.31 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.9.16", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.0+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}