Update handler.py
Browse files- handler.py +59 -86
handler.py
CHANGED
@@ -1,127 +1,100 @@
|
|
1 |
-
from typing import
|
2 |
import base64
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
6 |
import torch
|
7 |
-
|
8 |
-
|
9 |
-
import numpy as np
|
10 |
-
import cv2
|
11 |
import controlnet_hinter
|
12 |
|
13 |
# set device
|
14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
15 |
if device.type != 'cuda':
|
16 |
-
raise ValueError("
|
17 |
# set mixed precision dtype
|
18 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
19 |
|
20 |
-
# controlnet mapping for controlnet
|
21 |
CONTROLNET_MAPPING = {
|
22 |
-
"canny_edge": {
|
23 |
-
"model_id": "lllyasviel/sd-controlnet-canny",
|
24 |
-
"hinter": controlnet_hinter.hint_canny
|
25 |
-
},
|
26 |
-
"pose": {
|
27 |
-
"model_id": "lllyasviel/sd-controlnet-openpose",
|
28 |
-
"hinter": controlnet_hinter.hint_openpose
|
29 |
-
},
|
30 |
"depth": {
|
31 |
"model_id": "lllyasviel/sd-controlnet-depth",
|
32 |
"hinter": controlnet_hinter.hint_depth
|
33 |
-
},
|
34 |
-
"scribble": {
|
35 |
-
"model_id": "lllyasviel/sd-controlnet-scribble",
|
36 |
-
"hinter": controlnet_hinter.hint_scribble,
|
37 |
-
},
|
38 |
-
"segmentation": {
|
39 |
-
"model_id": "lllyasviel/sd-controlnet-seg",
|
40 |
-
"hinter": controlnet_hinter.hint_segmentation,
|
41 |
-
},
|
42 |
-
"normal": {
|
43 |
-
"model_id": "lllyasviel/sd-controlnet-normal",
|
44 |
-
"hinter": controlnet_hinter.hint_normal,
|
45 |
-
},
|
46 |
-
"hed": {
|
47 |
-
"model_id": "lllyasviel/sd-controlnet-hed",
|
48 |
-
"hinter": controlnet_hinter.hint_hed,
|
49 |
-
},
|
50 |
-
"hough": {
|
51 |
-
"model_id": "lllyasviel/sd-controlnet-mlsd",
|
52 |
-
"hinter": controlnet_hinter.hint_hough,
|
53 |
}
|
54 |
}
|
55 |
|
56 |
-
|
57 |
class EndpointHandler():
|
58 |
def __init__(self, path=""):
|
59 |
# define default controlnet id and load controlnet
|
60 |
-
self.control_type = "
|
61 |
-
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
|
62 |
-
|
63 |
-
# Load StableDiffusionControlNetPipeline
|
64 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
65 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
66 |
-
controlnet=self.controlnet,
|
67 |
torch_dtype=dtype,
|
68 |
safety_checker=None).to(device)
|
69 |
# Define Generator with seed
|
70 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
71 |
|
72 |
-
def __call__(self, data: Any) ->
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
""
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
# Check if neither prompt nor image is provided
|
82 |
-
if prompt is None and image is None:
|
83 |
-
return {"error": "Please provide a prompt and base64 encoded image."}
|
84 |
-
|
85 |
-
# Check if a new controlnet is provided
|
86 |
-
if controlnet_type is not None and controlnet_type != self.control_type:
|
87 |
-
print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
|
88 |
-
self.control_type = controlnet_type
|
89 |
-
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
|
90 |
-
torch_dtype=dtype).to(device)
|
91 |
-
self.pipe.controlnet = self.controlnet
|
92 |
-
|
93 |
-
|
94 |
-
# hyperparamters
|
95 |
-
num_inference_steps = data.pop("num_inference_steps", 30)
|
96 |
-
guidance_scale = data.pop("guidance_scale", 7.5)
|
97 |
-
negative_prompt = data.pop("negative_prompt", None)
|
98 |
-
height = data.pop("height", None)
|
99 |
-
width = data.pop("width", None)
|
100 |
-
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
|
101 |
|
102 |
-
#
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
#
|
|
|
|
|
|
|
107 |
out = self.pipe(
|
108 |
-
prompt=prompt,
|
109 |
negative_prompt=negative_prompt,
|
110 |
-
|
111 |
-
num_inference_steps=num_inference_steps,
|
112 |
guidance_scale=guidance_scale,
|
113 |
num_images_per_prompt=1,
|
114 |
height=height,
|
115 |
width=width,
|
116 |
-
controlnet_conditioning_scale=
|
117 |
-
generator=self.generator
|
|
|
118 |
)
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
125 |
def decode_base64_image(self, image_string):
|
126 |
base64_image = base64.b64decode(image_string)
|
127 |
buffer = BytesIO(base64_image)
|
|
|
1 |
+
from typing import List, Dict, Any
|
2 |
import base64
|
3 |
from PIL import Image
|
4 |
from io import BytesIO
|
5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
6 |
import torch
|
|
|
|
|
|
|
|
|
7 |
import controlnet_hinter
|
8 |
|
9 |
# set device
|
10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
11 |
if device.type != 'cuda':
|
12 |
+
raise ValueError("Need to run on GPU")
|
13 |
# set mixed precision dtype
|
14 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
15 |
|
16 |
+
# controlnet mapping for depth controlnet
|
17 |
CONTROLNET_MAPPING = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
"depth": {
|
19 |
"model_id": "lllyasviel/sd-controlnet-depth",
|
20 |
"hinter": controlnet_hinter.hint_depth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
}
|
22 |
}
|
23 |
|
|
|
24 |
class EndpointHandler():
|
25 |
def __init__(self, path=""):
|
26 |
# define default controlnet id and load controlnet
|
27 |
+
self.control_type = "depth"
|
28 |
+
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"], torch_dtype=dtype).to(device)
|
29 |
+
|
30 |
+
# Load StableDiffusionControlNetPipeline
|
31 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
32 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
33 |
+
controlnet=self.controlnet,
|
34 |
torch_dtype=dtype,
|
35 |
safety_checker=None).to(device)
|
36 |
# Define Generator with seed
|
37 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
38 |
|
39 |
+
def __call__(self, data: Any) -> Dict[str, str]:
|
40 |
+
# Extract parameters from the payload
|
41 |
+
prompt = data.get("prompt", None)
|
42 |
+
negative_prompt = data.get("negative_prompt", None)
|
43 |
+
width = data.get("width", None)
|
44 |
+
height = data.get("height", None)
|
45 |
+
num_inference_steps = data.get("steps", 30)
|
46 |
+
guidance_scale = data.get("cfg_scale", 7)
|
47 |
+
sampler_index = data.get("sampler_index", "DPM++ 2M Karras") # Default to "DPM++ 2M Karras" if not provided
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
# Check if prompt is provided
|
50 |
+
if prompt is None:
|
51 |
+
return {"error": "Please provide a prompt."}
|
52 |
+
|
53 |
+
# Extract controlnet configuration from payload
|
54 |
+
controlnet_config = data.get("alwayson_scripts", {}).get("controlnet", {}).get("args", [{}])[0]
|
55 |
+
|
56 |
+
# Run stable diffusion process
|
57 |
out = self.pipe(
|
58 |
+
prompt=prompt,
|
59 |
negative_prompt=negative_prompt,
|
60 |
+
num_inference_steps=num_inference_steps,
|
|
|
61 |
guidance_scale=guidance_scale,
|
62 |
num_images_per_prompt=1,
|
63 |
height=height,
|
64 |
width=width,
|
65 |
+
controlnet_conditioning_scale=1.0,
|
66 |
+
generator=self.generator,
|
67 |
+
sampler_index=sampler_index # Pass the sampler_index to the stable diffusion process
|
68 |
)
|
69 |
|
70 |
+
# Get the generated image
|
71 |
+
generated_image = out.images[0]
|
72 |
+
|
73 |
+
# Process with controlnet if enabled
|
74 |
+
if controlnet_config.get("enabled", False):
|
75 |
+
input_image_base64 = controlnet_config.get("input_image", "")
|
76 |
+
input_image = self.decode_base64_image(input_image_base64)
|
77 |
+
controlnet_model = controlnet_config.get("model", "")
|
78 |
+
controlnet_control_mode = controlnet_config.get("control_mode", "")
|
79 |
+
|
80 |
+
processed_image = self.process_with_controlnet(generated_image, input_image, controlnet_model, controlnet_control_mode)
|
81 |
+
else:
|
82 |
+
processed_image = generated_image
|
83 |
+
|
84 |
+
# Return the final processed image as base64
|
85 |
+
return {"image": self.encode_base64_image(processed_image)}
|
86 |
+
|
87 |
+
def process_with_controlnet(self, generated_image, input_image, model, control_mode):
|
88 |
+
# Simulated controlnet processing (replace with actual implementation)
|
89 |
+
# Here, we're just using the input_image as-is. Replace this with your controlnet logic.
|
90 |
+
return input_image
|
91 |
+
|
92 |
+
def encode_base64_image(self, image):
|
93 |
+
# Encode the PIL Image to base64
|
94 |
+
buffer = BytesIO()
|
95 |
+
image.save(buffer, format="PNG")
|
96 |
+
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
97 |
+
|
98 |
def decode_base64_image(self, image_string):
|
99 |
base64_image = base64.b64decode(image_string)
|
100 |
buffer = BytesIO(base64_image)
|