--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-multilingual-cased tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: populism_model2 results: [] --- # populism_model2 This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4895 - Accuracy: 0.9149 - F1: 0.4051 - Recall: 0.5479 - Precision: 0.3213 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.6178 | 1.0 | 87 | 0.4434 | 0.7889 | 0.2829 | 0.7877 | 0.1724 | | 0.4174 | 2.0 | 174 | 0.4149 | 0.7589 | 0.2885 | 0.9247 | 0.1709 | | 0.3132 | 3.0 | 261 | 0.4303 | 0.9008 | 0.3744 | 0.5616 | 0.2808 | | 0.2642 | 4.0 | 348 | 0.4344 | 0.9015 | 0.4138 | 0.6575 | 0.3019 | | 0.2153 | 5.0 | 435 | 0.4895 | 0.9149 | 0.4051 | 0.5479 | 0.3213 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0