Improved documentation
Browse files
README.md
CHANGED
|
@@ -14,6 +14,8 @@ model_file: model.pkl
|
|
| 14 |
|
| 15 |
Suicide Detection text classification model.
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
## Training Procedure
|
| 19 |
|
|
@@ -33,9 +35,9 @@ See main.py for further details.
|
|
| 33 |
| Hyperparameter | Value |
|
| 34 |
|-------------------------------------|-------------------------------------------|
|
| 35 |
| memory | |
|
| 36 |
-
| steps | [('tfidf', TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at
|
| 37 |
| verbose | True |
|
| 38 |
-
| tfidf | TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at
|
| 39 |
| classifier | XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...) |
|
| 40 |
| tfidf__analyzer | word |
|
| 41 |
| tfidf__binary | False |
|
|
@@ -49,7 +51,7 @@ See main.py for further details.
|
|
| 49 |
| tfidf__min_df | 100 |
|
| 50 |
| tfidf__ngram_range | (1, 3) |
|
| 51 |
| tfidf__norm | l2 |
|
| 52 |
-
| tfidf__preprocessor | <function preprocessor at
|
| 53 |
| tfidf__smooth_idf | True |
|
| 54 |
| tfidf__stop_words | |
|
| 55 |
| tfidf__strip_accents | |
|
|
@@ -178,7 +180,7 @@ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
|
|
| 178 |
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
| 179 |
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
|
| 180 |
}
|
| 181 |
-
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('tfidf',TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=<function preprocessor at
|
| 182 |
|
| 183 |
## Evaluation Results
|
| 184 |
|
|
|
|
| 14 |
|
| 15 |
Suicide Detection text classification model.
|
| 16 |
|
| 17 |
+
PYTHON 3.9 ONLY
|
| 18 |
+
|
| 19 |
|
| 20 |
## Training Procedure
|
| 21 |
|
|
|
|
| 35 |
| Hyperparameter | Value |
|
| 36 |
|-------------------------------------|-------------------------------------------|
|
| 37 |
| memory | |
|
| 38 |
+
| steps | [('tfidf', TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fc4367e5280>)), ('classifier', XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...))] |
|
| 39 |
| verbose | True |
|
| 40 |
+
| tfidf | TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fc4367e5280>) |
|
| 41 |
| classifier | XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...) |
|
| 42 |
| tfidf__analyzer | word |
|
| 43 |
| tfidf__binary | False |
|
|
|
|
| 51 |
| tfidf__min_df | 100 |
|
| 52 |
| tfidf__ngram_range | (1, 3) |
|
| 53 |
| tfidf__norm | l2 |
|
| 54 |
+
| tfidf__preprocessor | <function preprocessor at 0x7fc4367e5280> |
|
| 55 |
| tfidf__smooth_idf | True |
|
| 56 |
| tfidf__stop_words | |
|
| 57 |
| tfidf__strip_accents | |
|
|
|
|
| 180 |
#sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
|
| 181 |
}#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
|
| 182 |
}
|
| 183 |
+
</style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[('tfidf',TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=<function preprocessor at 0x7fc4367e5280>)),('classifier',XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[('tfidf',TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=<function preprocessor at 0x7fc4367e5280>)),('classifier',XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted"> TfidfVectorizer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html">?<span>Documentation for TfidfVectorizer</span></a></label><div class="sk-toggleable__content fitted"><pre>TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=<function preprocessor at 0x7fc4367e5280>)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">XGBClassifier</label><div class="sk-toggleable__content fitted"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div></div></div>
|
| 184 |
|
| 185 |
## Evaluation Results
|
| 186 |
|
main.py
CHANGED
|
@@ -85,6 +85,8 @@ model_card.metadata.license = "mit"
|
|
| 85 |
|
| 86 |
model_description = """
|
| 87 |
Suicide Detection text classification model.
|
|
|
|
|
|
|
| 88 |
"""
|
| 89 |
|
| 90 |
model_card.add(**{"Model description": model_description})
|
|
|
|
| 85 |
|
| 86 |
model_description = """
|
| 87 |
Suicide Detection text classification model.
|
| 88 |
+
|
| 89 |
+
PYTHON 3.9 ONLY
|
| 90 |
"""
|
| 91 |
|
| 92 |
model_card.add(**{"Model description": model_description})
|
model.pkl
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 222084873
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:4a017267c3abe9acc8cdc759cda29ee0c753b496c0e53ed4527c77235290f442
|
| 3 |
size 222084873
|