AndyJamesTurner commited on
Commit
95af55b
·
verified ·
1 Parent(s): fbee800

Improved documentation

Browse files
Files changed (3) hide show
  1. README.md +6 -4
  2. main.py +2 -0
  3. model.pkl +1 -1
README.md CHANGED
@@ -14,6 +14,8 @@ model_file: model.pkl
14
 
15
  Suicide Detection text classification model.
16
 
 
 
17
 
18
  ## Training Procedure
19
 
@@ -33,9 +35,9 @@ See main.py for further details.
33
  | Hyperparameter | Value |
34
  |-------------------------------------|-------------------------------------------|
35
  | memory | |
36
- | steps | [('tfidf', TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fcc098e3280>)), ('classifier', XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...))] |
37
  | verbose | True |
38
- | tfidf | TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fcc098e3280>) |
39
  | classifier | XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...) |
40
  | tfidf__analyzer | word |
41
  | tfidf__binary | False |
@@ -49,7 +51,7 @@ See main.py for further details.
49
  | tfidf__min_df | 100 |
50
  | tfidf__ngram_range | (1, 3) |
51
  | tfidf__norm | l2 |
52
- | tfidf__preprocessor | <function preprocessor at 0x7fcc098e3280> |
53
  | tfidf__smooth_idf | True |
54
  | tfidf__stop_words | |
55
  | tfidf__strip_accents | |
@@ -178,7 +180,7 @@ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
178
  #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
179
  }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
180
  }
181
- </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fcc098e3280&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fcc098e3280&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;TfidfVectorizer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html">?<span>Documentation for TfidfVectorizer</span></a></label><div class="sk-toggleable__content fitted"><pre>TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fcc098e3280&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">XGBClassifier</label><div class="sk-toggleable__content fitted"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div></div></div>
182
 
183
  ## Evaluation Results
184
 
 
14
 
15
  Suicide Detection text classification model.
16
 
17
+ PYTHON 3.9 ONLY
18
+
19
 
20
  ## Training Procedure
21
 
 
35
  | Hyperparameter | Value |
36
  |-------------------------------------|-------------------------------------------|
37
  | memory | |
38
+ | steps | [('tfidf', TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fc4367e5280>)), ('classifier', XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...))] |
39
  | verbose | True |
40
+ | tfidf | TfidfVectorizer(min_df=100, ngram_range=(1, 3),<br /> preprocessor=<function preprocessor at 0x7fc4367e5280>) |
41
  | classifier | XGBClassifier(base_score=None, booster=None, callbacks=None,<br /> colsample_bylevel=None, colsample_bynode=None,<br /> colsample_bytree=None, device=None, early_stopping_rounds=None,<br /> enable_categorical=False, eval_metric=None, feature_types=None,<br /> gamma=None, grow_policy=None, importance_type=None,<br /> interaction_constraints=None, learning_rate=None, max_bin=None,<br /> max_cat_threshold=None, max_cat_to_onehot=None,<br /> max_delta_step=None, max_depth=None, max_leaves=None,<br /> min_child_weight=None, missing=nan, monotone_constraints=None,<br /> multi_strategy=None, n_estimators=None, n_jobs=None,<br /> num_parallel_tree=None, random_state=None, ...) |
42
  | tfidf__analyzer | word |
43
  | tfidf__binary | False |
 
51
  | tfidf__min_df | 100 |
52
  | tfidf__ngram_range | (1, 3) |
53
  | tfidf__norm | l2 |
54
+ | tfidf__preprocessor | <function preprocessor at 0x7fc4367e5280> |
55
  | tfidf__smooth_idf | True |
56
  | tfidf__stop_words | |
57
  | tfidf__strip_accents | |
 
180
  #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
181
  }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
182
  }
183
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fc4367e5280&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;tfidf&#x27;,TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fc4367e5280&gt;)),(&#x27;classifier&#x27;,XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None,early_stopping_rounds=None,enable_categorical=False, eval_metric=None,featur...importance_type=None,interaction_constraints=None, learning_rate=None,max_bin=None, max_cat_threshold=None,max_cat_to_onehot=None, max_delta_step=None,max_depth=None, max_leaves=None,min_child_weight=None, missing=nan,monotone_constraints=None, multi_strategy=None,n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...))],verbose=True)</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;TfidfVectorizer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.4/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html">?<span>Documentation for TfidfVectorizer</span></a></label><div class="sk-toggleable__content fitted"><pre>TfidfVectorizer(min_df=100, ngram_range=(1, 3),preprocessor=&lt;function preprocessor at 0x7fc4367e5280&gt;)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">XGBClassifier</label><div class="sk-toggleable__content fitted"><pre>XGBClassifier(base_score=None, booster=None, callbacks=None,colsample_bylevel=None, colsample_bynode=None,colsample_bytree=None, device=None, early_stopping_rounds=None,enable_categorical=False, eval_metric=None, feature_types=None,gamma=None, grow_policy=None, importance_type=None,interaction_constraints=None, learning_rate=None, max_bin=None,max_cat_threshold=None, max_cat_to_onehot=None,max_delta_step=None, max_depth=None, max_leaves=None,min_child_weight=None, missing=nan, monotone_constraints=None,multi_strategy=None, n_estimators=None, n_jobs=None,num_parallel_tree=None, random_state=None, ...)</pre></div> </div></div></div></div></div></div>
184
 
185
  ## Evaluation Results
186
 
main.py CHANGED
@@ -85,6 +85,8 @@ model_card.metadata.license = "mit"
85
 
86
  model_description = """
87
  Suicide Detection text classification model.
 
 
88
  """
89
 
90
  model_card.add(**{"Model description": model_description})
 
85
 
86
  model_description = """
87
  Suicide Detection text classification model.
88
+
89
+ PYTHON 3.9 ONLY
90
  """
91
 
92
  model_card.add(**{"Model description": model_description})
model.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:68d02c53135ed449af21eb59ac0d4275b1e9ab4260af78e03e3747215e3d80c2
3
  size 222084873
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4a017267c3abe9acc8cdc759cda29ee0c753b496c0e53ed4527c77235290f442
3
  size 222084873