File size: 29,644 Bytes
8b7c501 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 |
#include <stdint.h>
#include <stddef.h>
#include <stdlib.h>
#include <string.h>
#include <cpuinfo.h>
#include <arm/linux/api.h>
#if defined(__ANDROID__)
#include <arm/android/api.h>
#endif
#include <arm/api.h>
#include <arm/midr.h>
#include <linux/api.h>
#include <cpuinfo/internal-api.h>
#include <cpuinfo/log.h>
#include <cpuinfo/common.h>
#define CLUSTERS_MAX 3
static inline bool bitmask_all(uint32_t bitfield, uint32_t mask) {
return (bitfield & mask) == mask;
}
/* Description of core clusters configuration in a chipset (identified by series and model number) */
struct cluster_config {
/* Number of cores (logical processors) */
uint8_t cores;
/* ARM chipset series (see cpuinfo_arm_chipset_series enum) */
uint8_t series;
/* Chipset model number (see cpuinfo_arm_chipset struct) */
uint16_t model;
/* Number of heterogenous clusters in the CPU package */
uint8_t clusters;
/*
* Number of cores in each cluster:
# - Symmetric configurations: [0] = # cores
* - big.LITTLE configurations: [0] = # LITTLE cores, [1] = # big cores
* - Max.Med.Min configurations: [0] = # Min cores, [1] = # Med cores, [2] = # Max cores
*/
uint8_t cluster_cores[CLUSTERS_MAX];
/*
* MIDR of cores in each cluster:
* - Symmetric configurations: [0] = core MIDR
* - big.LITTLE configurations: [0] = LITTLE core MIDR, [1] = big core MIDR
* - Max.Med.Min configurations: [0] = Min core MIDR, [1] = Med core MIDR, [2] = Max core MIDR
*/
uint32_t cluster_midr[CLUSTERS_MAX];
};
/*
* The list of chipsets where MIDR may not be unambigiously decoded at least on some devices.
* The typical reasons for impossibility to decoded MIDRs are buggy kernels, which either do not report all MIDR
* information (e.g. on ATM7029 kernel doesn't report CPU Part), or chipsets have more than one type of cores
* (i.e. 4x Cortex-A53 + 4x Cortex-A53 is out) and buggy kernels report MIDR information only about some cores
* in /proc/cpuinfo (either only online cores, or only the core that reads /proc/cpuinfo). On these kernels/chipsets,
* it is not possible to detect all core types by just parsing /proc/cpuinfo, so we use chipset name and this table to
* find their MIDR (and thus microarchitecture, cache, etc).
*
* Note: not all chipsets with heterogeneous multiprocessing need an entry in this table. The following HMP
* chipsets always list information about all cores in /proc/cpuinfo:
*
* - Snapdragon 660
* - Snapdragon 820 (MSM8996)
* - Snapdragon 821 (MSM8996PRO)
* - Snapdragon 835 (MSM8998)
* - Exynos 8895
* - Kirin 960
*
* As these are all new processors, there is hope that this table won't uncontrollably grow over time.
*/
static const struct cluster_config cluster_configs[] = {
#if CPUINFO_ARCH_ARM
{
/*
* MSM8916 (Snapdragon 410): 4x Cortex-A53
* Some AArch32 phones use non-standard /proc/cpuinfo format.
*/
.cores = 4,
.series = cpuinfo_arm_chipset_series_qualcomm_msm,
.model = UINT16_C(8916),
.clusters = 1,
.cluster_cores = {
[0] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD030),
},
},
{
/*
* MSM8939 (Snapdragon 615): 4x Cortex-A53 + 4x Cortex-A53
* Some AArch32 phones use non-standard /proc/cpuinfo format.
*/
.cores = 8,
.series = cpuinfo_arm_chipset_series_qualcomm_msm,
.model = UINT16_C(8939),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x410FD034),
},
},
#endif
{
/* MSM8956 (Snapdragon 650): 2x Cortex-A72 + 4x Cortex-A53 */
.cores = 6,
.series = cpuinfo_arm_chipset_series_qualcomm_msm,
.model = UINT16_C(8956),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x410FD080),
},
},
{
/* MSM8976/MSM8976PRO (Snapdragon 652/653): 4x Cortex-A72 + 4x Cortex-A53 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_qualcomm_msm,
.model = UINT16_C(8976),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x410FD080),
},
},
{
/* MSM8992 (Snapdragon 808): 2x Cortex-A57 + 4x Cortex-A53 */
.cores = 6,
.series = cpuinfo_arm_chipset_series_qualcomm_msm,
.model = UINT16_C(8992),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD033),
[1] = UINT32_C(0x411FD072),
},
},
{
/* MSM8994/MSM8994V (Snapdragon 810): 4x Cortex-A57 + 4x Cortex-A53 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_qualcomm_msm,
.model = UINT16_C(8994),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD032),
[1] = UINT32_C(0x411FD071),
},
},
#if CPUINFO_ARCH_ARM
{
/* Exynos 5422: 4x Cortex-A15 + 4x Cortex-A7 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = UINT16_C(5422),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC073),
[1] = UINT32_C(0x412FC0F3),
},
},
{
/* Exynos 5430: 4x Cortex-A15 + 4x Cortex-A7 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = UINT16_C(5430),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC074),
[1] = UINT32_C(0x413FC0F3),
},
},
#endif /* CPUINFO_ARCH_ARM */
{
/* Exynos 5433: 4x Cortex-A57 + 4x Cortex-A53 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = UINT16_C(5433),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD031),
[1] = UINT32_C(0x411FD070),
},
},
{
/* Exynos 7420: 4x Cortex-A57 + 4x Cortex-A53 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = UINT16_C(7420),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD032),
[1] = UINT32_C(0x411FD070),
},
},
{
/* Exynos 8890: 4x Exynos M1 + 4x Cortex-A53 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_samsung_exynos,
.model = UINT16_C(8890),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x531F0011),
},
},
#if CPUINFO_ARCH_ARM
{
/* Kirin 920: 4x Cortex-A15 + 4x Cortex-A7 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_hisilicon_kirin,
.model = UINT16_C(920),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC075),
[1] = UINT32_C(0x413FC0F3),
},
},
{
/* Kirin 925: 4x Cortex-A15 + 4x Cortex-A7 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_hisilicon_kirin,
.model = UINT16_C(925),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC075),
[1] = UINT32_C(0x413FC0F3),
},
},
{
/* Kirin 928: 4x Cortex-A15 + 4x Cortex-A7 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_hisilicon_kirin,
.model = UINT16_C(928),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC075),
[1] = UINT32_C(0x413FC0F3),
},
},
#endif /* CPUINFO_ARCH_ARM */
{
/* Kirin 950: 4x Cortex-A72 + 4x Cortex-A53 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_hisilicon_kirin,
.model = UINT16_C(950),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x410FD080),
},
},
{
/* Kirin 955: 4x Cortex-A72 + 4x Cortex-A53 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_hisilicon_kirin,
.model = UINT16_C(955),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x410FD080),
},
},
#if CPUINFO_ARCH_ARM
{
/* MediaTek MT8135: 2x Cortex-A7 + 2x Cortex-A15 */
.cores = 4,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(8135),
.clusters = 2,
.cluster_cores = {
[0] = 2,
[1] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC073),
[1] = UINT32_C(0x413FC0F2),
},
},
#endif
{
/* MediaTek MT8173: 2x Cortex-A72 + 2x Cortex-A53 */
.cores = 4,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(8173),
.clusters = 2,
.cluster_cores = {
[0] = 2,
[1] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD032),
[1] = UINT32_C(0x410FD080),
},
},
{
/* MediaTek MT8176: 2x Cortex-A72 + 4x Cortex-A53 */
.cores = 6,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(8176),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD032),
[1] = UINT32_C(0x410FD080),
},
},
#if CPUINFO_ARCH_ARM64
{
/*
* MediaTek MT8735: 4x Cortex-A53
* Some AArch64 phones use non-standard /proc/cpuinfo format.
*/
.cores = 4,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(8735),
.clusters = 1,
.cluster_cores = {
[0] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
},
},
#endif
#if CPUINFO_ARCH_ARM
{
/*
* MediaTek MT6592: 4x Cortex-A7 + 4x Cortex-A7
* Some phones use non-standard /proc/cpuinfo format.
*/
.cores = 4,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(6592),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC074),
[1] = UINT32_C(0x410FC074),
},
},
{
/* MediaTek MT6595: 4x Cortex-A17 + 4x Cortex-A7 */
.cores = 8,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(6595),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC075),
[1] = UINT32_C(0x410FC0E0),
},
},
#endif
{
/* MediaTek MT6797: 2x Cortex-A72 + 4x Cortex-A53 + 4x Cortex-A53 */
.cores = 10,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(6797),
.clusters = 3,
.cluster_cores = {
[0] = 4,
[1] = 4,
[2] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x410FD034),
[2] = UINT32_C(0x410FD081),
},
},
{
/* MediaTek MT6799: 2x Cortex-A73 + 4x Cortex-A53 + 4x Cortex-A35 */
.cores = 10,
.series = cpuinfo_arm_chipset_series_mediatek_mt,
.model = UINT16_C(6799),
.clusters = 3,
.cluster_cores = {
[0] = 4,
[1] = 4,
[2] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD041),
[1] = UINT32_C(0x410FD034),
[2] = UINT32_C(0x410FD092),
},
},
{
/* Rockchip RK3399: 2x Cortex-A72 + 4x Cortex-A53 */
.cores = 6,
.series = cpuinfo_arm_chipset_series_rockchip_rk,
.model = UINT16_C(3399),
.clusters = 2,
.cluster_cores = {
[0] = 4,
[1] = 2,
},
.cluster_midr = {
[0] = UINT32_C(0x410FD034),
[1] = UINT32_C(0x410FD082),
},
},
#if CPUINFO_ARCH_ARM
{
/* Actions ATM8029: 4x Cortex-A5
* Most devices use non-standard /proc/cpuinfo format.
*/
.cores = 4,
.series = cpuinfo_arm_chipset_series_actions_atm,
.model = UINT16_C(7029),
.clusters = 1,
.cluster_cores = {
[0] = 4,
},
.cluster_midr = {
[0] = UINT32_C(0x410FC051),
},
},
#endif
};
/*
* Searches chipset name in mapping of chipset name to cores' MIDR values. If match is successful, initializes MIDR
* for all clusters' leaders with tabulated values.
*
* @param[in] chipset - chipset (SoC) name information.
* @param clusters_count - number of CPU core clusters detected in the SoC.
* @param cluster_leaders - indices of core clusters' leaders in the @p processors array.
* @param processors_count - number of usable logical processors in the system.
* @param[in,out] processors - array of logical processor descriptions with pre-parsed MIDR, maximum frequency,
* and decoded core cluster (package_leader_id) information.
* Upon successful return, processors[i].midr for all clusters' leaders contains the
* tabulated MIDR values.
* @param verify_midr - indicated whether the function should check that the MIDR values to be assigned to leaders of
* core clusters are consistent with known parts of their parsed values.
* Set if to false if the only MIDR value parsed from /proc/cpuinfo is for the last processor
* reported in /proc/cpuinfo and thus can't be unambiguously attributed to that processor.
*
* @retval true if the chipset was found in the mapping and core clusters' leaders initialized with MIDR values.
* @retval false if the chipset was not found in the mapping, or any consistency check failed.
*/
static bool cpuinfo_arm_linux_detect_cluster_midr_by_chipset(
const struct cpuinfo_arm_chipset chipset[restrict static 1],
uint32_t clusters_count,
const uint32_t cluster_leaders[restrict static CLUSTERS_MAX],
uint32_t processors_count,
struct cpuinfo_arm_linux_processor processors[restrict static processors_count],
bool verify_midr)
{
if (clusters_count <= CLUSTERS_MAX) {
for (uint32_t c = 0; c < CPUINFO_COUNT_OF(cluster_configs); c++) {
if (cluster_configs[c].model == chipset->model && cluster_configs[c].series == chipset->series) {
/* Verify that the total number of cores and clusters of cores matches expectation */
if (cluster_configs[c].cores != processors_count || cluster_configs[c].clusters != clusters_count) {
return false;
}
/* Verify that core cluster configuration matches expectation */
for (uint32_t cluster = 0; cluster < clusters_count; cluster++) {
const uint32_t cluster_leader = cluster_leaders[cluster];
if (cluster_configs[c].cluster_cores[cluster] != processors[cluster_leader].package_processor_count) {
return false;
}
}
if (verify_midr) {
/* Verify known parts of MIDR */
for (uint32_t cluster = 0; cluster < clusters_count; cluster++) {
const uint32_t cluster_leader = cluster_leaders[cluster];
/* Create a mask of known midr bits */
uint32_t midr_mask = 0;
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_IMPLEMENTER) {
midr_mask |= CPUINFO_ARM_MIDR_IMPLEMENTER_MASK;
}
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_VARIANT) {
midr_mask |= CPUINFO_ARM_MIDR_VARIANT_MASK;
}
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_PART) {
midr_mask |= CPUINFO_ARM_MIDR_PART_MASK;
}
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_REVISION) {
midr_mask |= CPUINFO_ARM_MIDR_REVISION_MASK;
}
/* Verify the bits under the mask */
if ((processors[cluster_leader].midr ^ cluster_configs[c].cluster_midr[cluster]) & midr_mask) {
cpuinfo_log_debug("parsed MIDR of cluster %08"PRIu32" does not match tabulated value %08"PRIu32,
processors[cluster_leader].midr, cluster_configs[c].cluster_midr[cluster]);
return false;
}
}
}
/* Assign MIDRs according to tabulated configurations */
for (uint32_t cluster = 0; cluster < clusters_count; cluster++) {
const uint32_t cluster_leader = cluster_leaders[cluster];
processors[cluster_leader].midr = cluster_configs[c].cluster_midr[cluster];
processors[cluster_leader].flags |= CPUINFO_ARM_LINUX_VALID_MIDR;
cpuinfo_log_debug("cluster %"PRIu32" MIDR = 0x%08"PRIx32, cluster, cluster_configs[c].cluster_midr[cluster]);
}
return true;
}
}
}
return false;
}
/*
* Initializes MIDR for leaders of core clusters using a heuristic for big.LITTLE systems:
* - If the only known MIDR is for the big core cluster, guess the matching MIDR for the LITTLE cluster.
* - Estimate which of the clusters is big using maximum frequency, if known, otherwise using system processor ID.
* - Initialize the MIDR for big and LITTLE core clusters using the guesstimates values.
*
* @param clusters_count - number of CPU core clusters detected in the SoC.
* @param cluster_with_midr_count - number of CPU core clusters in the SoC with known MIDR values.
* @param last_processor_with_midr - index of the last logical processor with known MIDR in the @p processors array.
* @param cluster_leaders - indices of core clusters' leaders in the @p processors array.
* @param[in,out] processors - array of logical processor descriptions with pre-parsed MIDR, maximum frequency,
* and decoded core cluster (package_leader_id) information.
* Upon successful return, processors[i].midr for all core clusters' leaders contains
* the heuristically detected MIDR value.
* @param verify_midr - indicated whether the function should check that the MIDR values to be assigned to leaders of
* core clusters are consistent with known parts of their parsed values.
* Set if to false if the only MIDR value parsed from /proc/cpuinfo is for the last processor
* reported in /proc/cpuinfo and thus can't be unambiguously attributed to that processor.
*
* @retval true if this is a big.LITTLE system with only one known MIDR and the CPU core clusters' leaders were
* initialized with MIDR values.
* @retval false if this is not a big.LITTLE system.
*/
static bool cpuinfo_arm_linux_detect_cluster_midr_by_big_little_heuristic(
uint32_t clusters_count,
uint32_t cluster_with_midr_count,
uint32_t last_processor_with_midr,
const uint32_t cluster_leaders[restrict static CLUSTERS_MAX],
struct cpuinfo_arm_linux_processor processors[restrict static last_processor_with_midr],
bool verify_midr)
{
if (clusters_count != 2 || cluster_with_midr_count != 1) {
/* Not a big.LITTLE system, or MIDR is known for both/neither clusters */
return false;
}
const uint32_t midr_flags =
(processors[processors[last_processor_with_midr].package_leader_id].flags & CPUINFO_ARM_LINUX_VALID_MIDR);
const uint32_t big_midr = processors[processors[last_processor_with_midr].package_leader_id].midr;
const uint32_t little_midr = midr_little_core_for_big(big_midr);
/* Default assumption: the first reported cluster is LITTLE cluster (this holds on most Linux kernels) */
uint32_t little_cluster_leader = cluster_leaders[0];
const uint32_t other_cluster_leader = cluster_leaders[1];
/* If maximum frequency is known for both clusters, assume LITTLE cluster is the one with lower frequency */
if (processors[little_cluster_leader].flags & processors[other_cluster_leader].flags & CPUINFO_LINUX_FLAG_MAX_FREQUENCY) {
if (processors[little_cluster_leader].max_frequency > processors[other_cluster_leader].max_frequency) {
little_cluster_leader = other_cluster_leader;
}
}
if (verify_midr) {
/* Verify known parts of MIDR */
for (uint32_t cluster = 0; cluster < clusters_count; cluster++) {
const uint32_t cluster_leader = cluster_leaders[cluster];
/* Create a mask of known midr bits */
uint32_t midr_mask = 0;
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_IMPLEMENTER) {
midr_mask |= CPUINFO_ARM_MIDR_IMPLEMENTER_MASK;
}
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_VARIANT) {
midr_mask |= CPUINFO_ARM_MIDR_VARIANT_MASK;
}
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_PART) {
midr_mask |= CPUINFO_ARM_MIDR_PART_MASK;
}
if (processors[cluster_leader].flags & CPUINFO_ARM_LINUX_VALID_REVISION) {
midr_mask |= CPUINFO_ARM_MIDR_REVISION_MASK;
}
/* Verify the bits under the mask */
const uint32_t midr = (cluster_leader == little_cluster_leader) ? little_midr : big_midr;
if ((processors[cluster_leader].midr ^ midr) & midr_mask) {
cpuinfo_log_debug(
"parsed MIDR %08"PRIu32" of cluster leader %"PRIu32" is inconsistent with expected value %08"PRIu32,
processors[cluster_leader].midr, cluster_leader, midr);
return false;
}
}
}
for (uint32_t c = 0; c < clusters_count; c++) {
/* Skip cluster with already assigned MIDR */
const uint32_t cluster_leader = cluster_leaders[c];
if (bitmask_all(processors[cluster_leader].flags, CPUINFO_ARM_LINUX_VALID_MIDR)) {
continue;
}
const uint32_t midr = (cluster_leader == little_cluster_leader) ? little_midr : big_midr;
cpuinfo_log_info("assume processor %"PRIu32" to have MIDR %08"PRIx32, cluster_leader, midr);
/* To be consistent, we copy the MIDR entirely, rather than by parts */
processors[cluster_leader].midr = midr;
processors[cluster_leader].flags |= midr_flags;
}
return true;
}
/*
* Initializes MIDR for leaders of core clusters in a single sequential scan:
* - Clusters preceding the first reported MIDR value are assumed to have default MIDR value.
* - Clusters following any reported MIDR value to have that MIDR value.
*
* @param default_midr - MIDR value that will be assigned to cluster leaders preceding any reported MIDR value.
* @param processors_count - number of logical processor descriptions in the @p processors array.
* @param[in,out] processors - array of logical processor descriptions with pre-parsed MIDR, maximum frequency,
* and decoded core cluster (package_leader_id) information.
* Upon successful return, processors[i].midr for all core clusters' leaders contains
* the assigned MIDR value.
*/
static void cpuinfo_arm_linux_detect_cluster_midr_by_sequential_scan(
uint32_t default_midr,
uint32_t processors_count,
struct cpuinfo_arm_linux_processor processors[restrict static processors_count])
{
uint32_t midr = default_midr;
for (uint32_t i = 0; i < processors_count; i++) {
if (bitmask_all(processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
if (processors[i].package_leader_id == i) {
if (bitmask_all(processors[i].flags, CPUINFO_ARM_LINUX_VALID_MIDR)) {
midr = processors[i].midr;
} else {
cpuinfo_log_info("assume processor %"PRIu32" to have MIDR %08"PRIx32, i, midr);
/* To be consistent, we copy the MIDR entirely, rather than by parts */
processors[i].midr = midr;
processors[i].flags |= CPUINFO_ARM_LINUX_VALID_MIDR;
}
}
}
}
}
/*
* Detects MIDR of each CPU core clusters' leader.
*
* @param[in] chipset - chipset (SoC) name information.
* @param max_processors - number of processor descriptions in the @p processors array.
* @param usable_processors - number of processor descriptions in the @p processors array with both POSSIBLE and
* PRESENT flags.
* @param[in,out] processors - array of logical processor descriptions with pre-parsed MIDR, maximum frequency,
* and decoded core cluster (package_leader_id) information.
* Upon return, processors[i].midr for all clusters' leaders contains the MIDR value.
*
* @returns The number of core clusters
*/
uint32_t cpuinfo_arm_linux_detect_cluster_midr(
const struct cpuinfo_arm_chipset chipset[restrict static 1],
uint32_t max_processors,
uint32_t usable_processors,
struct cpuinfo_arm_linux_processor processors[restrict static max_processors])
{
uint32_t clusters_count = 0;
uint32_t cluster_leaders[CLUSTERS_MAX];
uint32_t last_processor_in_cpuinfo = max_processors;
uint32_t last_processor_with_midr = max_processors;
uint32_t processors_with_midr_count = 0;
for (uint32_t i = 0; i < max_processors; i++) {
if (bitmask_all(processors[i].flags, CPUINFO_LINUX_FLAG_VALID)) {
if (processors[i].flags & CPUINFO_ARM_LINUX_VALID_PROCESSOR) {
last_processor_in_cpuinfo = i;
}
if (bitmask_all(processors[i].flags, CPUINFO_ARM_LINUX_VALID_IMPLEMENTER | CPUINFO_ARM_LINUX_VALID_PART)) {
last_processor_with_midr = i;
processors_with_midr_count += 1;
}
const uint32_t group_leader = processors[i].package_leader_id;
if (group_leader == i) {
if (clusters_count < CLUSTERS_MAX) {
cluster_leaders[clusters_count] = i;
}
clusters_count += 1;
} else {
/* Copy known bits of information to cluster leader */
if ((processors[i].flags & ~processors[group_leader].flags) & CPUINFO_LINUX_FLAG_MAX_FREQUENCY) {
processors[group_leader].max_frequency = processors[i].max_frequency;
processors[group_leader].flags |= CPUINFO_LINUX_FLAG_MAX_FREQUENCY;
}
if (!bitmask_all(processors[group_leader].flags, CPUINFO_ARM_LINUX_VALID_MIDR) &&
bitmask_all(processors[i].flags, CPUINFO_ARM_LINUX_VALID_MIDR))
{
processors[group_leader].midr = processors[i].midr;
processors[group_leader].flags |= CPUINFO_ARM_LINUX_VALID_MIDR;
}
}
}
}
cpuinfo_log_debug("detected %"PRIu32" core clusters", clusters_count);
/*
* Two relations between reported /proc/cpuinfo information, and cores is possible:
* - /proc/cpuinfo reports information for all or some of the cores below the corresponding
* "processor : <number>" lines. Information on offline cores may be missing.
* - /proc/cpuinfo reports information only once, after all "processor : <number>" lines.
* The reported information may relate to processor #0 or to the processor which
* executed the system calls to read /proc/cpuinfo. It is also indistinguishable
* from /proc/cpuinfo reporting information only for the last core (e.g. if all other
* cores are offline).
*
* We detect the second case by checking if /proc/cpuinfo contains valid MIDR only for one,
* last reported, processor. Note, that the last reported core may be not the last
* present & possible processor, as /proc/cpuinfo may non-report high-index offline cores.
*/
if (processors_with_midr_count == 1 && last_processor_in_cpuinfo == last_processor_with_midr && clusters_count > 1) {
/*
* There are multiple core clusters, but /proc/cpuinfo reported MIDR only for one
* processor, and we don't even know which logical processor this information refers to.
*
* We make three attempts to detect MIDR for all clusters:
* 1. Search tabulated MIDR values for chipsets which have heterogeneous clusters and ship with Linux
* kernels which do not always report all cores in /proc/cpuinfo. If found, use the tabulated values.
* 2. For systems with 2 clusters and MIDR known for one cluster, assume big.LITTLE configuration,
* and estimate MIDR for the other cluster under assumption that MIDR for the big cluster is known.
* 3. Initialize MIDRs for all core clusters to the only parsed MIDR value.
*/
cpuinfo_log_debug("the only reported MIDR can not be attributed to a particular processor");
if (cpuinfo_arm_linux_detect_cluster_midr_by_chipset(
chipset, clusters_count, cluster_leaders, usable_processors, processors, false))
{
return clusters_count;
}
/* Try big.LITTLE heuristic */
if (cpuinfo_arm_linux_detect_cluster_midr_by_big_little_heuristic(
clusters_count, 1, last_processor_with_midr,
cluster_leaders, processors, false))
{
return clusters_count;
}
/* Fall back to sequential initialization of MIDR values for core clusters */
cpuinfo_arm_linux_detect_cluster_midr_by_sequential_scan(
processors[processors[last_processor_with_midr].package_leader_id].midr,
max_processors, processors);
} else if (processors_with_midr_count < usable_processors) {
/*
* /proc/cpuinfo reported MIDR only for some processors, and probably some core clusters do not have MIDR
* for any of the cores. Check if this is the case.
*/
uint32_t clusters_with_midr_count = 0;
for (uint32_t i = 0; i < max_processors; i++) {
if (bitmask_all(processors[i].flags, CPUINFO_LINUX_FLAG_VALID | CPUINFO_ARM_LINUX_VALID_MIDR)) {
if (processors[i].package_leader_id == i) {
clusters_with_midr_count += 1;
}
}
}
if (clusters_with_midr_count < clusters_count) {
/*
* /proc/cpuinfo reported MIDR only for some clusters, need to reconstruct others.
* We make three attempts to detect MIDR for clusters without it:
* 1. Search tabulated MIDR values for chipsets which have heterogeneous clusters and ship with Linux
* kernels which do not always report all cores in /proc/cpuinfo. If found, use the tabulated values.
* 2. For systems with 2 clusters and MIDR known for one cluster, assume big.LITTLE configuration,
* and estimate MIDR for the other cluster under assumption that MIDR for the big cluster is known.
* 3. Initialize MIDRs for core clusters in a single sequential scan:
* - Clusters preceding the first reported MIDR value are assumed to have the last reported MIDR value.
* - Clusters following any reported MIDR value to have that MIDR value.
*/
if (cpuinfo_arm_linux_detect_cluster_midr_by_chipset(
chipset, clusters_count, cluster_leaders, usable_processors, processors, true))
{
return clusters_count;
}
if (last_processor_with_midr != max_processors) {
/* Try big.LITTLE heuristic */
if (cpuinfo_arm_linux_detect_cluster_midr_by_big_little_heuristic(
clusters_count, processors_with_midr_count, last_processor_with_midr,
cluster_leaders, processors, true))
{
return clusters_count;
}
/* Fall back to sequential initialization of MIDR values for core clusters */
cpuinfo_arm_linux_detect_cluster_midr_by_sequential_scan(
processors[processors[last_processor_with_midr].package_leader_id].midr,
max_processors, processors);
}
}
}
return clusters_count;
}
|