This model bases on T5-base model, finetuned using bbc-news-summary dataset Example of using: def t5_summary(text: str): inputs = tokenizer.encode( "summarize: " + text, return_tensors='pt', max_length=2000, truncation=True, padding='max_length' ).to(torch.device("cuda")) # Generate the summary summary_ids = model.generate( inputs, max_length=250, num_beams=5 ) return tokenizer.decode(summary_ids[0], skip_special_tokens=True)