--- license: apache-2.0 base_model: google-bert/bert-base-cased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: test_trainer results: [] --- # test_trainer This model is a fine-tuned version of [google-bert/bert-base-cased](https://huggingface.co/google-bert/bert-base-cased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5712 - Precision: 0.8669 - Recall: 0.8669 - F1: 0.8669 - Accuracy: 0.8669 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.7396 | 1.0 | 7500 | 0.6680 | 0.8223 | 0.8223 | 0.8223 | 0.8223 | | 0.4939 | 2.0 | 15000 | 0.5864 | 0.8515 | 0.8515 | 0.8515 | 0.8515 | | 0.3209 | 3.0 | 22500 | 0.5712 | 0.8669 | 0.8669 | 0.8669 | 0.8669 | ### Framework versions - Transformers 4.40.2 - Pytorch 2.2.1+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1