import AnomalyCLIP_lib import torch import argparse import torch.nn.functional as F from prompt_ensemble import AnomalyCLIP_PromptLearner from PIL import Image import os import random import numpy as np from utils import get_transform, normalize def setup_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False # from visualization import visualizer import cv2 def apply_ad_scoremap(image, scoremap, alpha=0.5): np_image = np.asarray(image, dtype=float) scoremap = (scoremap * 255).astype(np.uint8) scoremap = cv2.applyColorMap(scoremap, cv2.COLORMAP_JET) scoremap = cv2.cvtColor(scoremap, cv2.COLOR_BGR2RGB) return (alpha * np_image + (1 - alpha) * scoremap).astype(np.uint8) def visualizer(path, anomaly_map, img_size): filename = os.path.basename(path) dirname = os.path.dirname(path) vis = cv2.cvtColor(cv2.resize(cv2.imread(path), (img_size, img_size)), cv2.COLOR_BGR2RGB) # RGB mask = normalize(anomaly_map[0]) vis = apply_ad_scoremap(vis, mask) vis = cv2.cvtColor(vis, cv2.COLOR_RGB2BGR) # BGR save_vis = os.path.join(dirname, f'anomaly_map_{filename}') print(save_vis) cv2.imwrite(save_vis, vis) from scipy.ndimage import gaussian_filter def test(args): img_size = args.image_size features_list = args.features_list image_path = args.image_path device = "cuda" if torch.cuda.is_available() else "cpu" AnomalyCLIP_parameters = {"Prompt_length": args.n_ctx, "learnabel_text_embedding_depth": args.depth, "learnabel_text_embedding_length": args.t_n_ctx} model, _ = AnomalyCLIP_lib.load("ViT-L/14@336px", device=device, design_details = AnomalyCLIP_parameters) model.eval() preprocess, target_transform = get_transform(args) prompt_learner = AnomalyCLIP_PromptLearner(model.to("cpu"), AnomalyCLIP_parameters) checkpoint = torch.load(args.checkpoint_path) prompt_learner.load_state_dict(checkpoint["prompt_learner"]) prompt_learner.to(device) model.to(device) model.visual.DAPM_replace(DPAM_layer = 20) prompts, tokenized_prompts, compound_prompts_text = prompt_learner(cls_id = None) text_features = model.encode_text_learn(prompts, tokenized_prompts, compound_prompts_text).float() text_features = torch.stack(torch.chunk(text_features, dim = 0, chunks = 2), dim = 1) text_features = text_features/text_features.norm(dim=-1, keepdim=True) img = Image.open(image_path) img = preprocess(img) print("img", img.shape) image = img.reshape(1, 3, img_size, img_size).to(device) with torch.no_grad(): image_features, patch_features = model.encode_image(image, features_list, DPAM_layer = 20) image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_probs = image_features @ text_features.permute(0, 2, 1) text_probs = (text_probs/0.07).softmax(-1) text_probs = text_probs[:, 0, 1] anomaly_map_list = [] for idx, patch_feature in enumerate(patch_features): if idx >= args.feature_map_layer[0]: patch_feature = patch_feature/ patch_feature.norm(dim = -1, keepdim = True) similarity, _ = AnomalyCLIP_lib.compute_similarity(patch_feature, text_features[0]) similarity_map = AnomalyCLIP_lib.get_similarity_map(similarity[:, 1:, :], args.image_size) anomaly_map = (similarity_map[...,1] + 1 - similarity_map[...,0])/2.0 anomaly_map_list.append(anomaly_map) anomaly_map = torch.stack(anomaly_map_list) anomaly_map = anomaly_map.sum(dim = 0) anomaly_map = torch.stack([torch.from_numpy(gaussian_filter(i, sigma = args.sigma)) for i in anomaly_map.detach().cpu()], dim = 0 ) visualizer(image_path, anomaly_map.detach().cpu().numpy(), args.image_size) if __name__ == '__main__': parser = argparse.ArgumentParser("AnomalyCLIP", add_help=True) # paths parser.add_argument("--image_path", type=str, default="./data/visa", help="path to test dataset") parser.add_argument("--checkpoint_path", type=str, default='./checkpoint/', help='path to checkpoint') # model parser.add_argument("--features_list", type=int, nargs="+", default=[6, 12, 18, 24], help="features used") parser.add_argument("--image_size", type=int, default=518, help="image size") parser.add_argument("--depth", type=int, default=9, help="image size") parser.add_argument("--n_ctx", type=int, default=12, help="zero shot") parser.add_argument("--t_n_ctx", type=int, default=4, help="zero shot") parser.add_argument("--feature_map_layer", type=int, nargs="+", default=[0, 1, 2, 3], help="zero shot") parser.add_argument("--seed", type=int, default=111, help="random seed") parser.add_argument("--sigma", type=int, default=4, help="zero shot") args = parser.parse_args() print(args) setup_seed(args.seed) test(args)