import os import json class BtadSolver(object): CLSNAMES = ['01', '02', '03'] def __init__(self, root='data/mvtec'): self.root = root self.meta_path = f'{root}/meta.json' def run(self): info = dict(train={}, test={}) anomaly_samples = 0 normal_samples = 0 for cls_name in self.CLSNAMES: cls_dir = f'{self.root}/{cls_name}' for phase in ['train', 'test']: cls_info = [] species = os.listdir(f'{cls_dir}/{phase}') for specie in species: is_abnormal = True if specie not in ['ok'] else False img_names = os.listdir(f'{cls_dir}/{phase}/{specie}') mask_names = os.listdir(f'{cls_dir}/ground_truth/{specie}') if is_abnormal else None img_names.sort() mask_names.sort() if mask_names is not None else None for idx, img_name in enumerate(img_names): info_img = dict( img_path=f'{cls_name}/{phase}/{specie}/{img_name}', mask_path=f'{cls_name}/ground_truth/{specie}/{mask_names[idx]}' if is_abnormal else '', cls_name=cls_name, specie_name=specie, anomaly=1 if is_abnormal else 0, ) cls_info.append(info_img) if phase == 'test': if is_abnormal: anomaly_samples = anomaly_samples + 1 else: normal_samples = normal_samples + 1 info[phase][cls_name] = cls_info with open(self.meta_path, 'w') as f: f.write(json.dumps(info, indent=4) + "\n") print('normal_samples', normal_samples, 'anomaly_samples', anomaly_samples) if __name__ == '__main__': runner = BtadSolver(root='/remote-home/iot_zhouqihang/data/BTech_Dataset_transformed') runner.run()