|
import hashlib |
|
import os |
|
import urllib |
|
import warnings |
|
from typing import Union, List |
|
from pkg_resources import packaging |
|
|
|
import torch |
|
from PIL import Image |
|
from torchvision.transforms import Compose, Resize, ToTensor, Normalize |
|
from tqdm import tqdm |
|
import numpy as np |
|
|
|
from .build_model import build_model |
|
from .simple_tokenizer import SimpleTokenizer as _Tokenizer |
|
from torchvision.transforms import InterpolationMode |
|
|
|
if packaging.version.parse(torch.__version__) < packaging.version.parse("1.7.1"): |
|
warnings.warn("PyTorch version 1.7.1 or higher is recommended") |
|
|
|
|
|
__all__ = ["available_models", "load", |
|
"get_similarity_map", "compute_similarity"] |
|
_tokenizer = _Tokenizer() |
|
|
|
_MODELS = { |
|
"ViT-L/14@336px": "https://openaipublic.azureedge.net/clip/models/3035c92b350959924f9f00213499208652fc7ea050643e8b385c2dac08641f02/ViT-L-14-336px.pt", |
|
} |
|
|
|
|
|
def _download( |
|
url: str, |
|
cache_dir: Union[str, None] = None, |
|
): |
|
|
|
if not cache_dir: |
|
|
|
cache_dir = os.path.expanduser("/remote-home/iot_zhouqihang/root/.cache/clip") |
|
os.makedirs(cache_dir, exist_ok=True) |
|
filename = os.path.basename(url) |
|
|
|
if 'openaipublic' in url: |
|
expected_sha256 = url.split("/")[-2] |
|
elif 'mlfoundations' in url: |
|
expected_sha256 = os.path.splitext(filename)[0].split("-")[-1] |
|
else: |
|
expected_sha256 = '' |
|
|
|
download_target = os.path.join(cache_dir, filename) |
|
|
|
if os.path.exists(download_target) and not os.path.isfile(download_target): |
|
raise RuntimeError(f"{download_target} exists and is not a regular file") |
|
|
|
if os.path.isfile(download_target): |
|
if expected_sha256: |
|
if hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): |
|
return download_target |
|
else: |
|
warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") |
|
else: |
|
return download_target |
|
|
|
with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: |
|
with tqdm(total=int(source.headers.get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: |
|
while True: |
|
buffer = source.read(8192) |
|
if not buffer: |
|
break |
|
|
|
output.write(buffer) |
|
loop.update(len(buffer)) |
|
|
|
if expected_sha256 and not hashlib.sha256(open(download_target, "rb").read()).hexdigest().startswith(expected_sha256): |
|
raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") |
|
|
|
return download_target |
|
|
|
|
|
def _convert_image_to_rgb(image): |
|
return image.convert("RGB") |
|
|
|
|
|
def _transform(n_px): |
|
return Compose([ |
|
Resize((n_px, n_px), interpolation=InterpolationMode.BICUBIC), |
|
|
|
_convert_image_to_rgb, |
|
ToTensor(), |
|
Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), |
|
]) |
|
|
|
|
|
def available_models() -> List[str]: |
|
"""Returns the names of available CLIP models""" |
|
return list(_MODELS.keys()) |
|
|
|
|
|
def load_state_dict(checkpoint_path: str, map_location='cpu'): |
|
checkpoint = torch.load(checkpoint_path, map_location=map_location) |
|
if isinstance(checkpoint, dict) and 'state_dict' in checkpoint: |
|
state_dict = checkpoint['state_dict'] |
|
else: |
|
state_dict = checkpoint |
|
if next(iter(state_dict.items()))[0].startswith('module'): |
|
state_dict = {k[7:]: v for k, v in state_dict.items()} |
|
return state_dict |
|
|
|
def load_checkpoint(model, checkpoint_path, strict=True): |
|
state_dict = load_state_dict(checkpoint_path) |
|
|
|
if 'positional_embedding' in state_dict and not hasattr(model, 'positional_embedding'): |
|
state_dict = convert_to_custom_text_state_dict(state_dict) |
|
resize_pos_embed(state_dict, model) |
|
incompatible_keys = model.load_state_dict(state_dict, strict=strict) |
|
return incompatible_keys |
|
|
|
def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", design_details = None, jit: bool = False, download_root: str = None): |
|
"""Load a CLIP model |
|
|
|
Parameters |
|
---------- |
|
name : str |
|
A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict |
|
|
|
device : Union[str, torch.device] |
|
The device to put the loaded model |
|
|
|
jit : bool |
|
Whether to load the optimized JIT model or more hackable non-JIT model (default). |
|
|
|
download_root: str |
|
path to download the model files; by default, it uses "~/.cache/clip" |
|
|
|
Returns |
|
------- |
|
model : torch.nn.Module |
|
The CLIP model |
|
|
|
preprocess : Callable[[PIL.Image], torch.Tensor] |
|
A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input |
|
""" |
|
print("name", name) |
|
if name in _MODELS: |
|
|
|
model_path = _download(_MODELS[name], download_root or os.path.expanduser("/remote-home/iot_zhouqihang/root/.cache/clip")) |
|
elif os.path.isfile(name): |
|
model_path = name |
|
else: |
|
raise RuntimeError(f"Model {name} not found; available models = {available_models()}") |
|
|
|
with open(model_path, 'rb') as opened_file: |
|
try: |
|
|
|
model = torch.jit.load(opened_file, map_location=device if jit else "cpu").eval() |
|
state_dict = None |
|
except RuntimeError: |
|
|
|
if jit: |
|
warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") |
|
jit = False |
|
state_dict = torch.load(opened_file, map_location="cpu") |
|
|
|
if not jit: |
|
model = build_model(name, state_dict or model.state_dict(), design_details).to(device) |
|
if str(device) == "cpu": |
|
model.float() |
|
return model, _transform(model.visual.input_resolution) |
|
|
|
|
|
device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) |
|
device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] |
|
|
|
def patch_device(module): |
|
try: |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
except RuntimeError: |
|
graphs = [] |
|
|
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("prim::Constant"): |
|
if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): |
|
node.copyAttributes(device_node) |
|
|
|
model.apply(patch_device) |
|
patch_device(model.encode_image) |
|
patch_device(model.encode_text) |
|
|
|
|
|
if str(device) == "cpu": |
|
float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) |
|
float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] |
|
float_node = float_input.node() |
|
|
|
def patch_float(module): |
|
try: |
|
graphs = [module.graph] if hasattr(module, "graph") else [] |
|
except RuntimeError: |
|
graphs = [] |
|
|
|
if hasattr(module, "forward1"): |
|
graphs.append(module.forward1.graph) |
|
|
|
for graph in graphs: |
|
for node in graph.findAllNodes("aten::to"): |
|
inputs = list(node.inputs()) |
|
for i in [1, 2]: |
|
if inputs[i].node()["value"] == 5: |
|
inputs[i].node().copyAttributes(float_node) |
|
|
|
model.apply(patch_float) |
|
patch_float(model.encode_image) |
|
patch_float(model.encode_text) |
|
|
|
model.float() |
|
|
|
return model, _transform(model.input_resolution.item()) |
|
|
|
|
|
def get_similarity_map(sm, shape): |
|
side = int(sm.shape[1] ** 0.5) |
|
sm = sm.reshape(sm.shape[0], side, side, -1).permute(0, 3, 1, 2) |
|
sm = torch.nn.functional.interpolate(sm, shape, mode='bilinear') |
|
sm = sm.permute(0, 2, 3, 1) |
|
return sm |
|
|
|
|
|
def compute_similarity(image_features, text_features, t=2): |
|
prob_1 = image_features[:, :1, :] @ text_features.t() |
|
b, n_t, n_i, c = image_features.shape[0], text_features.shape[0], image_features.shape[1], image_features.shape[2] |
|
feats = image_features.reshape(b, n_i, 1, c) * text_features.reshape(1, 1, n_t, c) |
|
similarity = feats.sum(-1) |
|
return (similarity/0.07).softmax(-1), prob_1 |
|
|