--- library_name: transformers license: other base_model: nvidia/mit-b1 tags: - vision - image-segmentation - generated_from_trainer model-index: - name: segformer-b01-finetuned-wrinkle results: [] --- # segformer-b01-finetuned-wrinkle This model is a fine-tuned version of [nvidia/mit-b1](https://huggingface.co/nvidia/mit-b1) on the face-wrinkles dataset. It achieves the following results on the evaluation set: - eval_loss: 0.0002 - eval_mean_iou: 0.0 - eval_mean_accuracy: nan - eval_overall_accuracy: nan - eval_accuracy_unlabeled: nan - eval_accuracy_wrinkle: nan - eval_iou_unlabeled: 0.0 - eval_iou_wrinkle: 0.0 - eval_runtime: 13.0305 - eval_samples_per_second: 10.053 - eval_steps_per_second: 5.065 - epoch: 2.3978 - step: 880 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 6e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3