--- license: apache-2.0 tags: - generated_from_trainer base_model: facebook/wav2vec2-xls-r-300m datasets: - common_voice_11_0 metrics: - wer model-index: - name: wav2vec2-large-xls-r-300m-tr-softkour results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: common_voice_11_0 type: common_voice_11_0 config: ar split: test args: ar metrics: - type: wer value: 0.6080256761575855 name: Wer --- # wav2vec2-large-xls-r-300m-tr-softkour This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice_11_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.6249 - Wer: 0.6080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 6.582 | 0.33 | 400 | 3.3382 | 0.9991 | | 2.0467 | 0.67 | 800 | 0.8908 | 0.7406 | | 0.8479 | 1.0 | 1200 | 0.6249 | 0.6080 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.2.2+cpu - Datasets 2.18.0 - Tokenizers 0.15.2