--- library_name: peft base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM tags: - axolotl - generated_from_trainer model-index: - name: 90dbfeae-95d3-47a2-a988-98c5906bae01 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: HuggingFaceH4/tiny-random-LlamaForCausalLM bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0e2a206b6cbe63d9_train_data.json ds_type: json format: custom path: /workspace/input_data/0e2a206b6cbe63d9_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/90dbfeae-95d3-47a2-a988-98c5906bae01 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 3600 micro_batch_size: 4 mlflow_experiment_name: /tmp/0e2a206b6cbe63d9_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 special_tokens: pad_token: strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.03361547925588775 wandb_entity: null wandb_mode: online wandb_name: 65ecc54e-1ce1-46d0-8d8f-a58fd50f5f0f wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 65ecc54e-1ce1-46d0-8d8f-a58fd50f5f0f warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 90dbfeae-95d3-47a2-a988-98c5906bae01 This model is a fine-tuned version of [HuggingFaceH4/tiny-random-LlamaForCausalLM](https://huggingface.co/HuggingFaceH4/tiny-random-LlamaForCausalLM) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.3113 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 3600 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 10.3673 | 0.0002 | 1 | 10.3688 | | 10.3363 | 0.0223 | 100 | 10.3367 | | 10.3308 | 0.0445 | 200 | 10.3281 | | 10.324 | 0.0668 | 300 | 10.3221 | | 10.3186 | 0.0890 | 400 | 10.3186 | | 10.3196 | 0.1113 | 500 | 10.3180 | | 10.3207 | 0.1336 | 600 | 10.3175 | | 10.321 | 0.1558 | 700 | 10.3171 | | 10.3129 | 0.1781 | 800 | 10.3167 | | 10.3111 | 0.2004 | 900 | 10.3158 | | 10.3192 | 0.2226 | 1000 | 10.3152 | | 10.3219 | 0.2449 | 1100 | 10.3147 | | 10.3197 | 0.2671 | 1200 | 10.3142 | | 10.3143 | 0.2894 | 1300 | 10.3139 | | 10.3172 | 0.3117 | 1400 | 10.3135 | | 10.315 | 0.3339 | 1500 | 10.3132 | | 10.3181 | 0.3562 | 1600 | 10.3128 | | 10.3104 | 0.3785 | 1700 | 10.3125 | | 10.3086 | 0.4007 | 1800 | 10.3123 | | 10.3091 | 0.4230 | 1900 | 10.3121 | | 10.3141 | 0.4452 | 2000 | 10.3119 | | 10.314 | 0.4675 | 2100 | 10.3118 | | 10.3158 | 0.4898 | 2200 | 10.3117 | | 10.3147 | 0.5120 | 2300 | 10.3117 | | 10.3192 | 0.5343 | 2400 | 10.3116 | | 10.3062 | 0.5565 | 2500 | 10.3115 | | 10.3046 | 0.5788 | 2600 | 10.3115 | | 10.3184 | 0.6011 | 2700 | 10.3114 | | 10.3104 | 0.6233 | 2800 | 10.3114 | | 10.3105 | 0.6456 | 2900 | 10.3114 | | 10.3174 | 0.6679 | 3000 | 10.3114 | | 10.3149 | 0.6901 | 3100 | 10.3113 | | 10.3201 | 0.7124 | 3200 | 10.3113 | | 10.3111 | 0.7346 | 3300 | 10.3113 | | 10.3115 | 0.7569 | 3400 | 10.3113 | | 10.3168 | 0.7792 | 3500 | 10.3113 | | 10.3123 | 0.8014 | 3600 | 10.3113 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1