--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2-0.5B-Instruct tags: - axolotl - generated_from_trainer model-index: - name: 8783abb4-4863-4d35-96d0-38591b2d8490 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen2-0.5B-Instruct bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - a23a73113e5bcd49_train_data.json ds_type: json format: custom path: /workspace/input_data/a23a73113e5bcd49_train_data.json type: field_instruction: title field_output: content format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/8783abb4-4863-4d35-96d0-38591b2d8490 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 128 lora_dropout: 0.1 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 5376 micro_batch_size: 4 mlflow_experiment_name: /tmp/a23a73113e5bcd49_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04787437763309077 wandb_entity: null wandb_mode: online wandb_name: 032a2798-2e45-4672-ba51-e28a8f853060 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 032a2798-2e45-4672-ba51-e28a8f853060 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 8783abb4-4863-4d35-96d0-38591b2d8490 This model is a fine-tuned version of [Qwen/Qwen2-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2-0.5B-Instruct) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.7221 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 5376 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.7661 | 0.0003 | 1 | 2.7781 | | 2.4133 | 0.0322 | 100 | 2.3111 | | 2.3796 | 0.0644 | 200 | 2.2424 | | 2.1234 | 0.0965 | 300 | 2.2007 | | 2.2836 | 0.1287 | 400 | 2.1683 | | 2.1882 | 0.1609 | 500 | 2.1389 | | 2.1209 | 0.1931 | 600 | 2.1168 | | 1.9807 | 0.2253 | 700 | 2.0961 | | 2.0003 | 0.2574 | 800 | 2.0819 | | 1.8976 | 0.2896 | 900 | 2.0609 | | 2.2535 | 0.3218 | 1000 | 2.0465 | | 2.0813 | 0.3540 | 1100 | 2.0284 | | 2.0837 | 0.3862 | 1200 | 2.0134 | | 1.8759 | 0.4183 | 1300 | 2.0016 | | 2.0767 | 0.4505 | 1400 | 1.9873 | | 2.0557 | 0.4827 | 1500 | 1.9745 | | 1.708 | 0.5149 | 1600 | 1.9607 | | 2.0113 | 0.5471 | 1700 | 1.9480 | | 2.0235 | 0.5792 | 1800 | 1.9328 | | 1.9351 | 0.6114 | 1900 | 1.9223 | | 1.796 | 0.6436 | 2000 | 1.9164 | | 1.8088 | 0.6758 | 2100 | 1.9011 | | 1.6286 | 0.7080 | 2200 | 1.8900 | | 1.9361 | 0.7401 | 2300 | 1.8786 | | 1.636 | 0.7723 | 2400 | 1.8669 | | 1.8454 | 0.8045 | 2500 | 1.8579 | | 1.9547 | 0.8367 | 2600 | 1.8472 | | 1.5638 | 0.8689 | 2700 | 1.8384 | | 1.611 | 0.9010 | 2800 | 1.8275 | | 1.7571 | 0.9332 | 2900 | 1.8143 | | 1.9847 | 0.9654 | 3000 | 1.8063 | | 1.9508 | 0.9976 | 3100 | 1.7982 | | 1.3798 | 1.0298 | 3200 | 1.7971 | | 1.5009 | 1.0619 | 3300 | 1.7864 | | 1.5614 | 1.0941 | 3400 | 1.7795 | | 1.7675 | 1.1263 | 3500 | 1.7721 | | 1.2293 | 1.1585 | 3600 | 1.7665 | | 1.7646 | 1.1907 | 3700 | 1.7610 | | 1.4301 | 1.2228 | 3800 | 1.7582 | | 1.2718 | 1.2550 | 3900 | 1.7507 | | 1.6806 | 1.2872 | 4000 | 1.7457 | | 1.5779 | 1.3194 | 4100 | 1.7413 | | 1.3326 | 1.3516 | 4200 | 1.7374 | | 1.6239 | 1.3837 | 4300 | 1.7350 | | 1.713 | 1.4159 | 4400 | 1.7322 | | 1.5364 | 1.4481 | 4500 | 1.7300 | | 1.2966 | 1.4803 | 4600 | 1.7277 | | 1.5881 | 1.5125 | 4700 | 1.7258 | | 1.2867 | 1.5447 | 4800 | 1.7244 | | 1.6141 | 1.5768 | 4900 | 1.7233 | | 1.6782 | 1.6090 | 5000 | 1.7233 | | 1.7381 | 1.6412 | 5100 | 1.7224 | | 1.6309 | 1.6734 | 5200 | 1.7222 | | 1.6214 | 1.7056 | 5300 | 1.7221 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1