--- library_name: transformers language: - tr license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: 'Whisper Large V3 Turbo FT TR Telephonic - Alperitoo ' results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: tr split: validation args: 'config: turkish, split: test' metrics: - name: Wer type: wer value: 15.630747366661094 --- # Whisper Large V3 Turbo FT TR Telephonic - Alperitoo This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.1739 - Wer: 15.6307 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1657 | 0.6154 | 1000 | 0.2519 | 21.1461 | | 0.0993 | 1.2308 | 2000 | 0.2193 | 19.6685 | | 0.0838 | 1.8462 | 3000 | 0.2031 | 18.6612 | | 0.0574 | 2.4615 | 4000 | 0.1923 | 16.5399 | | 0.0247 | 3.0769 | 5000 | 0.1739 | 15.6307 | ### Framework versions - Transformers 4.47.0 - Pytorch 2.4.1+cu121 - Datasets 3.1.0 - Tokenizers 0.21.0