--- base_model: Qwen/Qwen2-VL-72B-Instruct library_name: transformers license: apache-2.0 tags: - llama-factory - full - generated_from_trainer model-index: - name: TVC-72B results: [] pipeline_tag: image-text-to-text --- ## Model Summary The TVC models are 72B parameter models based on Qwen2-VL-72B-Instruct model with a context window of 8K tokens. - **Repository:** https://github.com/sun-hailong/TVC - **Languages:** English, Chinese - **Paper:** https://arxiv.org/abs/2503.13360 ### Model Architecture - **Architecture:** Qwen2-VL-72B-Instruct - **Data:** a mixture of 300k long-chain reasoning data - **Precision:** BFloat16 #### Hardware & Software - **Hardware:** 64 * NVIDIA Tesla H20 - **Orchestration:** HuggingFace Trainer - **Code:** Pytorch ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3 ## Citation ``` @article{sun2024mitigating, title={Mitigating Visual Forgetting via Take-along Visual Conditioning for Multi-modal Long CoT Reasoning}, author={Sun, Hai-Long and Sun, Zhun and Peng, Houwen and Ye, Han-Jia}, journal={arXiv preprint arXiv:2503.13360}, year={2025} } ```