--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - nyu-mll/glue metrics: - accuracy - f1 model_index: - name: mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metric: name: F1 type: f1 value: 0.901060070671378 --- # mrpc This model is a fine-tuned version of [albert-base-v2](https://huggingface.co/albert-base-v2) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.4171 - Accuracy: 0.8627 - F1: 0.9011 - Combined Score: 0.8819 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4.0 ### Training results ### Framework versions - Transformers 4.9.0 - Pytorch 1.9.0+cu102 - Datasets 1.10.2 - Tokenizers 0.10.3