diff --git "a/README.md" "b/README.md" --- "a/README.md" +++ "b/README.md" @@ -0,0 +1,7080 @@ +--- +license: apache-2.0 +base_model: +- Qwen/Qwen2-VL-7B-Instruct +language: +- en +- zh +tags: +- mteb +- sentence-transformers +- transformers +- Qwen2-VL +- sentence-similarity +- vidore +model-index: +- name: gme-Qwen2-VL-7B-Instruct + results: + - task: + type: STS + dataset: + type: C-MTEB/AFQMC + name: MTEB AFQMC + config: default + split: validation + revision: b44c3b011063adb25877c13823db83bb193913c4 + metrics: + - type: cos_sim_pearson + value: 55.46303883144227 + - type: cos_sim_spearman + value: 59.66708815497073 + - type: euclidean_pearson + value: 57.81360946949099 + - type: euclidean_spearman + value: 59.66710825926347 + - type: manhattan_pearson + value: 57.723697562189344 + - type: manhattan_spearman + value: 59.55004095814257 + - task: + type: STS + dataset: + type: C-MTEB/ATEC + name: MTEB ATEC + config: default + split: test + revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 + metrics: + - type: cos_sim_pearson + value: 52.381881068686894 + - type: cos_sim_spearman + value: 55.468235529709766 + - type: euclidean_pearson + value: 56.974786979175086 + - type: euclidean_spearman + value: 55.468231026153745 + - type: manhattan_pearson + value: 56.944671325662576 + - type: manhattan_spearman + value: 55.39037386224014 + - task: + type: Classification + dataset: + type: mteb/amazon_counterfactual + name: MTEB AmazonCounterfactualClassification (en) + config: en + split: test + revision: e8379541af4e31359cca9fbcf4b00f2671dba205 + metrics: + - type: accuracy + value: 77.61194029850746 + - type: ap + value: 41.29789064067677 + - type: f1 + value: 71.69633278678522 + - task: + type: Classification + dataset: + type: mteb/amazon_polarity + name: MTEB AmazonPolarityClassification + config: default + split: test + revision: e2d317d38cd51312af73b3d32a06d1a08b442046 + metrics: + - type: accuracy + value: 97.3258 + - type: ap + value: 95.91845683387056 + - type: f1 + value: 97.32526074864263 + - task: + type: Classification + dataset: + type: mteb/amazon_reviews_multi + name: MTEB AmazonReviewsClassification (en) + config: en + split: test + revision: 1399c76144fd37290681b995c656ef9b2e06e26d + metrics: + - type: accuracy + value: 64.794 + - type: f1 + value: 63.7329780206882 + - task: + type: Retrieval + dataset: + type: mteb/arguana + name: MTEB ArguAna + config: default + split: test + revision: c22ab2a51041ffd869aaddef7af8d8215647e41a + metrics: + - type: map_at_1 + value: 40.541 + - type: map_at_10 + value: 56.315000000000005 + - type: map_at_100 + value: 56.824 + - type: map_at_1000 + value: 56.825 + - type: map_at_3 + value: 51.778 + - type: map_at_5 + value: 54.623 + - type: mrr_at_1 + value: 41.038000000000004 + - type: mrr_at_10 + value: 56.532000000000004 + - type: mrr_at_100 + value: 57.034 + - type: mrr_at_1000 + value: 57.034 + - type: mrr_at_3 + value: 52.015 + - type: mrr_at_5 + value: 54.835 + - type: ndcg_at_1 + value: 40.541 + - type: ndcg_at_10 + value: 64.596 + - type: ndcg_at_100 + value: 66.656 + - type: ndcg_at_1000 + value: 66.666 + - type: ndcg_at_3 + value: 55.415000000000006 + - type: ndcg_at_5 + value: 60.527 + - type: precision_at_1 + value: 40.541 + - type: precision_at_10 + value: 9.083 + - type: precision_at_100 + value: 0.996 + - type: precision_at_1000 + value: 0.1 + - type: precision_at_3 + value: 21.977 + - type: precision_at_5 + value: 15.661 + - type: recall_at_1 + value: 40.541 + - type: recall_at_10 + value: 90.825 + - type: recall_at_100 + value: 99.57300000000001 + - type: recall_at_1000 + value: 99.644 + - type: recall_at_3 + value: 65.932 + - type: recall_at_5 + value: 78.307 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-p2p + name: MTEB ArxivClusteringP2P + config: default + split: test + revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d + metrics: + - type: v_measure + value: 54.96111428218386 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-s2s + name: MTEB ArxivClusteringS2S + config: default + split: test + revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 + metrics: + - type: v_measure + value: 50.637711388838945 + - task: + type: Reranking + dataset: + type: mteb/askubuntudupquestions-reranking + name: MTEB AskUbuntuDupQuestions + config: default + split: test + revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 + metrics: + - type: map + value: 64.0741897266483 + - type: mrr + value: 76.11440882909028 + - task: + type: STS + dataset: + type: mteb/biosses-sts + name: MTEB BIOSSES + config: default + split: test + revision: d3fb88f8f02e40887cd149695127462bbcf29b4a + metrics: + - type: cos_sim_pearson + value: 86.2557839280406 + - type: cos_sim_spearman + value: 82.58200216886888 + - type: euclidean_pearson + value: 84.80588838508498 + - type: euclidean_spearman + value: 82.58200216886888 + - type: manhattan_pearson + value: 84.53082035185592 + - type: manhattan_spearman + value: 82.4964580510134 + - task: + type: STS + dataset: + type: C-MTEB/BQ + name: MTEB BQ + config: default + split: test + revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 + metrics: + - type: cos_sim_pearson + value: 65.53432474956654 + - type: cos_sim_spearman + value: 66.8014310403835 + - type: euclidean_pearson + value: 65.59442518434007 + - type: euclidean_spearman + value: 66.80144143248799 + - type: manhattan_pearson + value: 65.55990611112435 + - type: manhattan_spearman + value: 66.77720657746703 + - task: + type: Classification + dataset: + type: mteb/banking77 + name: MTEB Banking77Classification + config: default + split: test + revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 + metrics: + - type: accuracy + value: 84.76298701298703 + - type: f1 + value: 84.24881789367576 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-p2p + name: MTEB BiorxivClusteringP2P + config: default + split: test + revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 + metrics: + - type: v_measure + value: 46.86757924102047 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-s2s + name: MTEB BiorxivClusteringS2S + config: default + split: test + revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 + metrics: + - type: v_measure + value: 43.86043680479362 + - task: + type: Clustering + dataset: + type: C-MTEB/CLSClusteringP2P + name: MTEB CLSClusteringP2P + config: default + split: test + revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 + metrics: + - type: v_measure + value: 45.684222588040605 + - task: + type: Clustering + dataset: + type: C-MTEB/CLSClusteringS2S + name: MTEB CLSClusteringS2S + config: default + split: test + revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f + metrics: + - type: v_measure + value: 45.45639765303432 + - task: + type: Reranking + dataset: + type: C-MTEB/CMedQAv1-reranking + name: MTEB CMedQAv1 + config: default + split: test + revision: 8d7f1e942507dac42dc58017c1a001c3717da7df + metrics: + - type: map + value: 88.7058672660788 + - type: mrr + value: 90.5795634920635 + - task: + type: Reranking + dataset: + type: C-MTEB/CMedQAv2-reranking + name: MTEB CMedQAv2 + config: default + split: test + revision: 23d186750531a14a0357ca22cd92d712fd512ea0 + metrics: + - type: map + value: 90.50750030424048 + - type: mrr + value: 92.3970634920635 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackAndroidRetrieval + config: default + split: test + revision: f46a197baaae43b4f621051089b82a364682dfeb + metrics: + - type: map_at_1 + value: 28.848000000000003 + - type: map_at_10 + value: 40.453 + - type: map_at_100 + value: 42.065000000000005 + - type: map_at_1000 + value: 42.176 + - type: map_at_3 + value: 36.697 + - type: map_at_5 + value: 38.855000000000004 + - type: mrr_at_1 + value: 34.764 + - type: mrr_at_10 + value: 45.662000000000006 + - type: mrr_at_100 + value: 46.56 + - type: mrr_at_1000 + value: 46.597 + - type: mrr_at_3 + value: 42.632 + - type: mrr_at_5 + value: 44.249 + - type: ndcg_at_1 + value: 34.764 + - type: ndcg_at_10 + value: 47.033 + - type: ndcg_at_100 + value: 53.089 + - type: ndcg_at_1000 + value: 54.818 + - type: ndcg_at_3 + value: 41.142 + - type: ndcg_at_5 + value: 43.928 + - type: precision_at_1 + value: 34.764 + - type: precision_at_10 + value: 9.027000000000001 + - type: precision_at_100 + value: 1.465 + - type: precision_at_1000 + value: 0.192 + - type: precision_at_3 + value: 19.695 + - type: precision_at_5 + value: 14.535 + - type: recall_at_1 + value: 28.848000000000003 + - type: recall_at_10 + value: 60.849 + - type: recall_at_100 + value: 85.764 + - type: recall_at_1000 + value: 96.098 + - type: recall_at_3 + value: 44.579 + - type: recall_at_5 + value: 51.678999999999995 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackEnglishRetrieval + config: default + split: test + revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 + metrics: + - type: map_at_1 + value: 30.731 + - type: map_at_10 + value: 41.859 + - type: map_at_100 + value: 43.13 + - type: map_at_1000 + value: 43.257 + - type: map_at_3 + value: 38.384 + - type: map_at_5 + value: 40.284 + - type: mrr_at_1 + value: 38.471 + - type: mrr_at_10 + value: 47.531 + - type: mrr_at_100 + value: 48.199 + - type: mrr_at_1000 + value: 48.24 + - type: mrr_at_3 + value: 44.989000000000004 + - type: mrr_at_5 + value: 46.403 + - type: ndcg_at_1 + value: 38.471 + - type: ndcg_at_10 + value: 48.022999999999996 + - type: ndcg_at_100 + value: 52.32599999999999 + - type: ndcg_at_1000 + value: 54.26 + - type: ndcg_at_3 + value: 42.986999999999995 + - type: ndcg_at_5 + value: 45.23 + - type: precision_at_1 + value: 38.471 + - type: precision_at_10 + value: 9.248000000000001 + - type: precision_at_100 + value: 1.469 + - type: precision_at_1000 + value: 0.193 + - type: precision_at_3 + value: 20.892 + - type: precision_at_5 + value: 14.892 + - type: recall_at_1 + value: 30.731 + - type: recall_at_10 + value: 59.561 + - type: recall_at_100 + value: 77.637 + - type: recall_at_1000 + value: 89.64999999999999 + - type: recall_at_3 + value: 44.897999999999996 + - type: recall_at_5 + value: 51.181 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGamingRetrieval + config: default + split: test + revision: 4885aa143210c98657558c04aaf3dc47cfb54340 + metrics: + - type: map_at_1 + value: 34.949000000000005 + - type: map_at_10 + value: 48.117 + - type: map_at_100 + value: 49.355 + - type: map_at_1000 + value: 49.409 + - type: map_at_3 + value: 44.732 + - type: map_at_5 + value: 46.555 + - type: mrr_at_1 + value: 40.188 + - type: mrr_at_10 + value: 51.452 + - type: mrr_at_100 + value: 52.219 + - type: mrr_at_1000 + value: 52.24100000000001 + - type: mrr_at_3 + value: 48.642 + - type: mrr_at_5 + value: 50.134 + - type: ndcg_at_1 + value: 40.188 + - type: ndcg_at_10 + value: 54.664 + - type: ndcg_at_100 + value: 59.38099999999999 + - type: ndcg_at_1000 + value: 60.363 + - type: ndcg_at_3 + value: 48.684 + - type: ndcg_at_5 + value: 51.406 + - type: precision_at_1 + value: 40.188 + - type: precision_at_10 + value: 9.116 + - type: precision_at_100 + value: 1.248 + - type: precision_at_1000 + value: 0.13699999999999998 + - type: precision_at_3 + value: 22.236 + - type: precision_at_5 + value: 15.310000000000002 + - type: recall_at_1 + value: 34.949000000000005 + - type: recall_at_10 + value: 70.767 + - type: recall_at_100 + value: 90.79 + - type: recall_at_1000 + value: 97.57900000000001 + - type: recall_at_3 + value: 54.723 + - type: recall_at_5 + value: 61.404 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGisRetrieval + config: default + split: test + revision: 5003b3064772da1887988e05400cf3806fe491f2 + metrics: + - type: map_at_1 + value: 25.312 + - type: map_at_10 + value: 34.799 + - type: map_at_100 + value: 35.906 + - type: map_at_1000 + value: 35.983 + - type: map_at_3 + value: 31.582 + - type: map_at_5 + value: 33.507999999999996 + - type: mrr_at_1 + value: 27.232 + - type: mrr_at_10 + value: 36.82 + - type: mrr_at_100 + value: 37.733 + - type: mrr_at_1000 + value: 37.791000000000004 + - type: mrr_at_3 + value: 33.804 + - type: mrr_at_5 + value: 35.606 + - type: ndcg_at_1 + value: 27.232 + - type: ndcg_at_10 + value: 40.524 + - type: ndcg_at_100 + value: 45.654 + - type: ndcg_at_1000 + value: 47.557 + - type: ndcg_at_3 + value: 34.312 + - type: ndcg_at_5 + value: 37.553 + - type: precision_at_1 + value: 27.232 + - type: precision_at_10 + value: 6.52 + - type: precision_at_100 + value: 0.9530000000000001 + - type: precision_at_1000 + value: 0.11399999999999999 + - type: precision_at_3 + value: 14.915000000000001 + - type: precision_at_5 + value: 10.847 + - type: recall_at_1 + value: 25.312 + - type: recall_at_10 + value: 56.169000000000004 + - type: recall_at_100 + value: 79.16499999999999 + - type: recall_at_1000 + value: 93.49300000000001 + - type: recall_at_3 + value: 39.5 + - type: recall_at_5 + value: 47.288999999999994 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackMathematicaRetrieval + config: default + split: test + revision: 90fceea13679c63fe563ded68f3b6f06e50061de + metrics: + - type: map_at_1 + value: 17.153 + - type: map_at_10 + value: 27.671 + - type: map_at_100 + value: 29.186 + - type: map_at_1000 + value: 29.299999999999997 + - type: map_at_3 + value: 24.490000000000002 + - type: map_at_5 + value: 26.178 + - type: mrr_at_1 + value: 21.144 + - type: mrr_at_10 + value: 32.177 + - type: mrr_at_100 + value: 33.247 + - type: mrr_at_1000 + value: 33.306000000000004 + - type: mrr_at_3 + value: 29.187 + - type: mrr_at_5 + value: 30.817 + - type: ndcg_at_1 + value: 21.144 + - type: ndcg_at_10 + value: 33.981 + - type: ndcg_at_100 + value: 40.549 + - type: ndcg_at_1000 + value: 43.03 + - type: ndcg_at_3 + value: 28.132 + - type: ndcg_at_5 + value: 30.721999999999998 + - type: precision_at_1 + value: 21.144 + - type: precision_at_10 + value: 6.666999999999999 + - type: precision_at_100 + value: 1.147 + - type: precision_at_1000 + value: 0.149 + - type: precision_at_3 + value: 14.302999999999999 + - type: precision_at_5 + value: 10.423 + - type: recall_at_1 + value: 17.153 + - type: recall_at_10 + value: 48.591 + - type: recall_at_100 + value: 76.413 + - type: recall_at_1000 + value: 93.8 + - type: recall_at_3 + value: 32.329 + - type: recall_at_5 + value: 38.958999999999996 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackPhysicsRetrieval + config: default + split: test + revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 + metrics: + - type: map_at_1 + value: 27.909 + - type: map_at_10 + value: 40.168 + - type: map_at_100 + value: 41.524 + - type: map_at_1000 + value: 41.626000000000005 + - type: map_at_3 + value: 36.274 + - type: map_at_5 + value: 38.411 + - type: mrr_at_1 + value: 34.649 + - type: mrr_at_10 + value: 45.613 + - type: mrr_at_100 + value: 46.408 + - type: mrr_at_1000 + value: 46.444 + - type: mrr_at_3 + value: 42.620999999999995 + - type: mrr_at_5 + value: 44.277 + - type: ndcg_at_1 + value: 34.649 + - type: ndcg_at_10 + value: 47.071000000000005 + - type: ndcg_at_100 + value: 52.559999999999995 + - type: ndcg_at_1000 + value: 54.285000000000004 + - type: ndcg_at_3 + value: 40.63 + - type: ndcg_at_5 + value: 43.584 + - type: precision_at_1 + value: 34.649 + - type: precision_at_10 + value: 8.855 + - type: precision_at_100 + value: 1.361 + - type: precision_at_1000 + value: 0.167 + - type: precision_at_3 + value: 19.538 + - type: precision_at_5 + value: 14.187 + - type: recall_at_1 + value: 27.909 + - type: recall_at_10 + value: 62.275000000000006 + - type: recall_at_100 + value: 84.95 + - type: recall_at_1000 + value: 96.02000000000001 + - type: recall_at_3 + value: 44.767 + - type: recall_at_5 + value: 52.03 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackProgrammersRetrieval + config: default + split: test + revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 + metrics: + - type: map_at_1 + value: 25.846000000000004 + - type: map_at_10 + value: 36.870999999999995 + - type: map_at_100 + value: 38.294 + - type: map_at_1000 + value: 38.401 + - type: map_at_3 + value: 33.163 + - type: map_at_5 + value: 35.177 + - type: mrr_at_1 + value: 31.849 + - type: mrr_at_10 + value: 41.681000000000004 + - type: mrr_at_100 + value: 42.658 + - type: mrr_at_1000 + value: 42.71 + - type: mrr_at_3 + value: 39.003 + - type: mrr_at_5 + value: 40.436 + - type: ndcg_at_1 + value: 31.849 + - type: ndcg_at_10 + value: 43.291000000000004 + - type: ndcg_at_100 + value: 49.136 + - type: ndcg_at_1000 + value: 51.168 + - type: ndcg_at_3 + value: 37.297999999999995 + - type: ndcg_at_5 + value: 39.934 + - type: precision_at_1 + value: 31.849 + - type: precision_at_10 + value: 8.219 + - type: precision_at_100 + value: 1.318 + - type: precision_at_1000 + value: 0.167 + - type: precision_at_3 + value: 18.151 + - type: precision_at_5 + value: 13.242 + - type: recall_at_1 + value: 25.846000000000004 + - type: recall_at_10 + value: 57.642 + - type: recall_at_100 + value: 82.069 + - type: recall_at_1000 + value: 95.684 + - type: recall_at_3 + value: 40.778999999999996 + - type: recall_at_5 + value: 47.647 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackStatsRetrieval + config: default + split: test + revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a + metrics: + - type: map_at_1 + value: 25.102000000000004 + - type: map_at_10 + value: 33.31 + - type: map_at_100 + value: 34.443 + - type: map_at_1000 + value: 34.547 + - type: map_at_3 + value: 30.932 + - type: map_at_5 + value: 32.126 + - type: mrr_at_1 + value: 28.221 + - type: mrr_at_10 + value: 36.519 + - type: mrr_at_100 + value: 37.425000000000004 + - type: mrr_at_1000 + value: 37.498 + - type: mrr_at_3 + value: 34.254 + - type: mrr_at_5 + value: 35.388999999999996 + - type: ndcg_at_1 + value: 28.221 + - type: ndcg_at_10 + value: 38.340999999999994 + - type: ndcg_at_100 + value: 43.572 + - type: ndcg_at_1000 + value: 45.979 + - type: ndcg_at_3 + value: 33.793 + - type: ndcg_at_5 + value: 35.681000000000004 + - type: precision_at_1 + value: 28.221 + - type: precision_at_10 + value: 6.135 + - type: precision_at_100 + value: 0.946 + - type: precision_at_1000 + value: 0.123 + - type: precision_at_3 + value: 14.519000000000002 + - type: precision_at_5 + value: 9.969 + - type: recall_at_1 + value: 25.102000000000004 + - type: recall_at_10 + value: 50.639 + - type: recall_at_100 + value: 74.075 + - type: recall_at_1000 + value: 91.393 + - type: recall_at_3 + value: 37.952000000000005 + - type: recall_at_5 + value: 42.71 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackTexRetrieval + config: default + split: test + revision: 46989137a86843e03a6195de44b09deda022eec7 + metrics: + - type: map_at_1 + value: 18.618000000000002 + - type: map_at_10 + value: 26.714 + - type: map_at_100 + value: 27.929 + - type: map_at_1000 + value: 28.057 + - type: map_at_3 + value: 24.134 + - type: map_at_5 + value: 25.575 + - type: mrr_at_1 + value: 22.573999999999998 + - type: mrr_at_10 + value: 30.786 + - type: mrr_at_100 + value: 31.746000000000002 + - type: mrr_at_1000 + value: 31.822 + - type: mrr_at_3 + value: 28.412 + - type: mrr_at_5 + value: 29.818 + - type: ndcg_at_1 + value: 22.573999999999998 + - type: ndcg_at_10 + value: 31.852000000000004 + - type: ndcg_at_100 + value: 37.477 + - type: ndcg_at_1000 + value: 40.331 + - type: ndcg_at_3 + value: 27.314 + - type: ndcg_at_5 + value: 29.485 + - type: precision_at_1 + value: 22.573999999999998 + - type: precision_at_10 + value: 5.86 + - type: precision_at_100 + value: 1.012 + - type: precision_at_1000 + value: 0.146 + - type: precision_at_3 + value: 13.099 + - type: precision_at_5 + value: 9.56 + - type: recall_at_1 + value: 18.618000000000002 + - type: recall_at_10 + value: 43.134 + - type: recall_at_100 + value: 68.294 + - type: recall_at_1000 + value: 88.283 + - type: recall_at_3 + value: 30.397999999999996 + - type: recall_at_5 + value: 35.998000000000005 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackUnixRetrieval + config: default + split: test + revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 + metrics: + - type: map_at_1 + value: 27.76 + - type: map_at_10 + value: 37.569 + - type: map_at_100 + value: 38.784 + - type: map_at_1000 + value: 38.884 + - type: map_at_3 + value: 34.379 + - type: map_at_5 + value: 36.092999999999996 + - type: mrr_at_1 + value: 32.556000000000004 + - type: mrr_at_10 + value: 41.870000000000005 + - type: mrr_at_100 + value: 42.759 + - type: mrr_at_1000 + value: 42.806 + - type: mrr_at_3 + value: 39.086 + - type: mrr_at_5 + value: 40.574 + - type: ndcg_at_1 + value: 32.556000000000004 + - type: ndcg_at_10 + value: 43.382 + - type: ndcg_at_100 + value: 48.943 + - type: ndcg_at_1000 + value: 50.961999999999996 + - type: ndcg_at_3 + value: 37.758 + - type: ndcg_at_5 + value: 40.282000000000004 + - type: precision_at_1 + value: 32.556000000000004 + - type: precision_at_10 + value: 7.463 + - type: precision_at_100 + value: 1.1480000000000001 + - type: precision_at_1000 + value: 0.14300000000000002 + - type: precision_at_3 + value: 17.133000000000003 + - type: precision_at_5 + value: 12.164 + - type: recall_at_1 + value: 27.76 + - type: recall_at_10 + value: 56.71000000000001 + - type: recall_at_100 + value: 81.053 + - type: recall_at_1000 + value: 94.75 + - type: recall_at_3 + value: 41.387 + - type: recall_at_5 + value: 47.818 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWebmastersRetrieval + config: default + split: test + revision: 160c094312a0e1facb97e55eeddb698c0abe3571 + metrics: + - type: map_at_1 + value: 23.62 + - type: map_at_10 + value: 33.522999999999996 + - type: map_at_100 + value: 35.281 + - type: map_at_1000 + value: 35.504000000000005 + - type: map_at_3 + value: 30.314999999999998 + - type: map_at_5 + value: 32.065 + - type: mrr_at_1 + value: 28.458 + - type: mrr_at_10 + value: 38.371 + - type: mrr_at_100 + value: 39.548 + - type: mrr_at_1000 + value: 39.601 + - type: mrr_at_3 + value: 35.638999999999996 + - type: mrr_at_5 + value: 37.319 + - type: ndcg_at_1 + value: 28.458 + - type: ndcg_at_10 + value: 39.715 + - type: ndcg_at_100 + value: 46.394999999999996 + - type: ndcg_at_1000 + value: 48.943999999999996 + - type: ndcg_at_3 + value: 34.361999999999995 + - type: ndcg_at_5 + value: 37.006 + - type: precision_at_1 + value: 28.458 + - type: precision_at_10 + value: 7.5889999999999995 + - type: precision_at_100 + value: 1.514 + - type: precision_at_1000 + value: 0.242 + - type: precision_at_3 + value: 16.073999999999998 + - type: precision_at_5 + value: 11.976 + - type: recall_at_1 + value: 23.62 + - type: recall_at_10 + value: 52.117000000000004 + - type: recall_at_100 + value: 81.097 + - type: recall_at_1000 + value: 96.47 + - type: recall_at_3 + value: 37.537 + - type: recall_at_5 + value: 44.112 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWordpressRetrieval + config: default + split: test + revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 + metrics: + - type: map_at_1 + value: 18.336 + - type: map_at_10 + value: 26.811 + - type: map_at_100 + value: 27.892 + - type: map_at_1000 + value: 27.986 + - type: map_at_3 + value: 23.976 + - type: map_at_5 + value: 25.605 + - type: mrr_at_1 + value: 20.148 + - type: mrr_at_10 + value: 28.898000000000003 + - type: mrr_at_100 + value: 29.866 + - type: mrr_at_1000 + value: 29.929 + - type: mrr_at_3 + value: 26.247999999999998 + - type: mrr_at_5 + value: 27.744999999999997 + - type: ndcg_at_1 + value: 20.148 + - type: ndcg_at_10 + value: 32.059 + - type: ndcg_at_100 + value: 37.495 + - type: ndcg_at_1000 + value: 39.855000000000004 + - type: ndcg_at_3 + value: 26.423000000000002 + - type: ndcg_at_5 + value: 29.212 + - type: precision_at_1 + value: 20.148 + - type: precision_at_10 + value: 5.268 + - type: precision_at_100 + value: 0.872 + - type: precision_at_1000 + value: 0.11900000000000001 + - type: precision_at_3 + value: 11.459999999999999 + - type: precision_at_5 + value: 8.503 + - type: recall_at_1 + value: 18.336 + - type: recall_at_10 + value: 46.411 + - type: recall_at_100 + value: 71.33500000000001 + - type: recall_at_1000 + value: 88.895 + - type: recall_at_3 + value: 31.134 + - type: recall_at_5 + value: 37.862 + - task: + type: Retrieval + dataset: + type: mteb/climate-fever + name: MTEB ClimateFEVER + config: default + split: test + revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 + metrics: + - type: map_at_1 + value: 21.149 + - type: map_at_10 + value: 35.251 + - type: map_at_100 + value: 37.342 + - type: map_at_1000 + value: 37.516 + - type: map_at_3 + value: 30.543 + - type: map_at_5 + value: 33.19 + - type: mrr_at_1 + value: 47.687000000000005 + - type: mrr_at_10 + value: 59.391000000000005 + - type: mrr_at_100 + value: 59.946999999999996 + - type: mrr_at_1000 + value: 59.965999999999994 + - type: mrr_at_3 + value: 56.938 + - type: mrr_at_5 + value: 58.498000000000005 + - type: ndcg_at_1 + value: 47.687000000000005 + - type: ndcg_at_10 + value: 45.381 + - type: ndcg_at_100 + value: 52.405 + - type: ndcg_at_1000 + value: 55.041 + - type: ndcg_at_3 + value: 40.024 + - type: ndcg_at_5 + value: 41.821999999999996 + - type: precision_at_1 + value: 47.687000000000005 + - type: precision_at_10 + value: 13.355 + - type: precision_at_100 + value: 2.113 + - type: precision_at_1000 + value: 0.261 + - type: precision_at_3 + value: 29.793999999999997 + - type: precision_at_5 + value: 21.811 + - type: recall_at_1 + value: 21.149 + - type: recall_at_10 + value: 49.937 + - type: recall_at_100 + value: 73.382 + - type: recall_at_1000 + value: 87.606 + - type: recall_at_3 + value: 35.704 + - type: recall_at_5 + value: 42.309000000000005 + - task: + type: Retrieval + dataset: + type: C-MTEB/CmedqaRetrieval + name: MTEB CmedqaRetrieval + config: default + split: dev + revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 + metrics: + - type: map_at_1 + value: 28.74 + - type: map_at_10 + value: 41.981 + - type: map_at_100 + value: 43.753 + - type: map_at_1000 + value: 43.858999999999995 + - type: map_at_3 + value: 37.634 + - type: map_at_5 + value: 40.158 + - type: mrr_at_1 + value: 43.086 + - type: mrr_at_10 + value: 51.249 + - type: mrr_at_100 + value: 52.154 + - type: mrr_at_1000 + value: 52.190999999999995 + - type: mrr_at_3 + value: 48.787000000000006 + - type: mrr_at_5 + value: 50.193 + - type: ndcg_at_1 + value: 43.086 + - type: ndcg_at_10 + value: 48.703 + - type: ndcg_at_100 + value: 55.531 + - type: ndcg_at_1000 + value: 57.267999999999994 + - type: ndcg_at_3 + value: 43.464000000000006 + - type: ndcg_at_5 + value: 45.719 + - type: precision_at_1 + value: 43.086 + - type: precision_at_10 + value: 10.568 + - type: precision_at_100 + value: 1.616 + - type: precision_at_1000 + value: 0.184 + - type: precision_at_3 + value: 24.256 + - type: precision_at_5 + value: 17.509 + - type: recall_at_1 + value: 28.74 + - type: recall_at_10 + value: 59.349 + - type: recall_at_100 + value: 87.466 + - type: recall_at_1000 + value: 98.914 + - type: recall_at_3 + value: 43.322 + - type: recall_at_5 + value: 50.409000000000006 + - task: + type: PairClassification + dataset: + type: C-MTEB/CMNLI + name: MTEB Cmnli + config: default + split: validation + revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 + metrics: + - type: cos_sim_accuracy + value: 79.03788334335539 + - type: cos_sim_ap + value: 87.21703260472833 + - type: cos_sim_f1 + value: 79.87784187309127 + - type: cos_sim_precision + value: 77.36634531113059 + - type: cos_sim_recall + value: 82.55786766425064 + - type: dot_accuracy + value: 79.03788334335539 + - type: dot_ap + value: 87.22906528217948 + - type: dot_f1 + value: 79.87784187309127 + - type: dot_precision + value: 77.36634531113059 + - type: dot_recall + value: 82.55786766425064 + - type: euclidean_accuracy + value: 79.03788334335539 + - type: euclidean_ap + value: 87.21703670465753 + - type: euclidean_f1 + value: 79.87784187309127 + - type: euclidean_precision + value: 77.36634531113059 + - type: euclidean_recall + value: 82.55786766425064 + - type: manhattan_accuracy + value: 78.28021647624774 + - type: manhattan_ap + value: 86.66244127855394 + - type: manhattan_f1 + value: 79.24485643228577 + - type: manhattan_precision + value: 76.71262858393521 + - type: manhattan_recall + value: 81.94996492868833 + - type: max_accuracy + value: 79.03788334335539 + - type: max_ap + value: 87.22906528217948 + - type: max_f1 + value: 79.87784187309127 + - task: + type: Retrieval + dataset: + type: C-MTEB/CovidRetrieval + name: MTEB CovidRetrieval + config: default + split: dev + revision: 1271c7809071a13532e05f25fb53511ffce77117 + metrics: + - type: map_at_1 + value: 67.597 + - type: map_at_10 + value: 75.81599999999999 + - type: map_at_100 + value: 76.226 + - type: map_at_1000 + value: 76.23100000000001 + - type: map_at_3 + value: 73.907 + - type: map_at_5 + value: 75.08200000000001 + - type: mrr_at_1 + value: 67.756 + - type: mrr_at_10 + value: 75.8 + - type: mrr_at_100 + value: 76.205 + - type: mrr_at_1000 + value: 76.21 + - type: mrr_at_3 + value: 73.955 + - type: mrr_at_5 + value: 75.093 + - type: ndcg_at_1 + value: 67.756 + - type: ndcg_at_10 + value: 79.598 + - type: ndcg_at_100 + value: 81.34400000000001 + - type: ndcg_at_1000 + value: 81.477 + - type: ndcg_at_3 + value: 75.876 + - type: ndcg_at_5 + value: 77.94200000000001 + - type: precision_at_1 + value: 67.756 + - type: precision_at_10 + value: 9.231 + - type: precision_at_100 + value: 1.0 + - type: precision_at_1000 + value: 0.101 + - type: precision_at_3 + value: 27.362 + - type: precision_at_5 + value: 17.45 + - type: recall_at_1 + value: 67.597 + - type: recall_at_10 + value: 91.307 + - type: recall_at_100 + value: 98.946 + - type: recall_at_1000 + value: 100.0 + - type: recall_at_3 + value: 81.428 + - type: recall_at_5 + value: 86.407 + - task: + type: Retrieval + dataset: + type: mteb/dbpedia + name: MTEB DBPedia + config: default + split: test + revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 + metrics: + - type: map_at_1 + value: 9.33 + - type: map_at_10 + value: 23.118 + - type: map_at_100 + value: 34.28 + - type: map_at_1000 + value: 36.574 + - type: map_at_3 + value: 15.576 + - type: map_at_5 + value: 18.778 + - type: mrr_at_1 + value: 75.25 + - type: mrr_at_10 + value: 81.958 + - type: mrr_at_100 + value: 82.282 + - type: mrr_at_1000 + value: 82.285 + - type: mrr_at_3 + value: 81.042 + - type: mrr_at_5 + value: 81.62899999999999 + - type: ndcg_at_1 + value: 63.625 + - type: ndcg_at_10 + value: 50.781 + - type: ndcg_at_100 + value: 55.537000000000006 + - type: ndcg_at_1000 + value: 62.651 + - type: ndcg_at_3 + value: 55.297 + - type: ndcg_at_5 + value: 53.103 + - type: precision_at_1 + value: 75.25 + - type: precision_at_10 + value: 41.475 + - type: precision_at_100 + value: 13.5 + - type: precision_at_1000 + value: 2.686 + - type: precision_at_3 + value: 59.333000000000006 + - type: precision_at_5 + value: 51.9 + - type: recall_at_1 + value: 9.33 + - type: recall_at_10 + value: 29.398000000000003 + - type: recall_at_100 + value: 61.951 + - type: recall_at_1000 + value: 85.463 + - type: recall_at_3 + value: 17.267 + - type: recall_at_5 + value: 21.89 + - task: + type: Retrieval + dataset: + type: C-MTEB/DuRetrieval + name: MTEB DuRetrieval + config: default + split: dev + revision: a1a333e290fe30b10f3f56498e3a0d911a693ced + metrics: + - type: map_at_1 + value: 25.608999999999998 + - type: map_at_10 + value: 78.649 + - type: map_at_100 + value: 81.67699999999999 + - type: map_at_1000 + value: 81.71000000000001 + - type: map_at_3 + value: 54.112 + - type: map_at_5 + value: 68.34700000000001 + - type: mrr_at_1 + value: 87.75 + - type: mrr_at_10 + value: 92.175 + - type: mrr_at_100 + value: 92.225 + - type: mrr_at_1000 + value: 92.227 + - type: mrr_at_3 + value: 91.833 + - type: mrr_at_5 + value: 92.06800000000001 + - type: ndcg_at_1 + value: 87.75 + - type: ndcg_at_10 + value: 86.56700000000001 + - type: ndcg_at_100 + value: 89.519 + - type: ndcg_at_1000 + value: 89.822 + - type: ndcg_at_3 + value: 84.414 + - type: ndcg_at_5 + value: 83.721 + - type: precision_at_1 + value: 87.75 + - type: precision_at_10 + value: 41.665 + - type: precision_at_100 + value: 4.827 + - type: precision_at_1000 + value: 0.49 + - type: precision_at_3 + value: 75.533 + - type: precision_at_5 + value: 64.01 + - type: recall_at_1 + value: 25.608999999999998 + - type: recall_at_10 + value: 88.708 + - type: recall_at_100 + value: 98.007 + - type: recall_at_1000 + value: 99.555 + - type: recall_at_3 + value: 57.157000000000004 + - type: recall_at_5 + value: 74.118 + - task: + type: Retrieval + dataset: + type: C-MTEB/EcomRetrieval + name: MTEB EcomRetrieval + config: default + split: dev + revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 + metrics: + - type: map_at_1 + value: 55.800000000000004 + - type: map_at_10 + value: 65.952 + - type: map_at_100 + value: 66.413 + - type: map_at_1000 + value: 66.426 + - type: map_at_3 + value: 63.3 + - type: map_at_5 + value: 64.945 + - type: mrr_at_1 + value: 55.800000000000004 + - type: mrr_at_10 + value: 65.952 + - type: mrr_at_100 + value: 66.413 + - type: mrr_at_1000 + value: 66.426 + - type: mrr_at_3 + value: 63.3 + - type: mrr_at_5 + value: 64.945 + - type: ndcg_at_1 + value: 55.800000000000004 + - type: ndcg_at_10 + value: 71.00800000000001 + - type: ndcg_at_100 + value: 72.974 + - type: ndcg_at_1000 + value: 73.302 + - type: ndcg_at_3 + value: 65.669 + - type: ndcg_at_5 + value: 68.634 + - type: precision_at_1 + value: 55.800000000000004 + - type: precision_at_10 + value: 8.690000000000001 + - type: precision_at_100 + value: 0.955 + - type: precision_at_1000 + value: 0.098 + - type: precision_at_3 + value: 24.166999999999998 + - type: precision_at_5 + value: 15.939999999999998 + - type: recall_at_1 + value: 55.800000000000004 + - type: recall_at_10 + value: 86.9 + - type: recall_at_100 + value: 95.5 + - type: recall_at_1000 + value: 98.0 + - type: recall_at_3 + value: 72.5 + - type: recall_at_5 + value: 79.7 + - task: + type: Classification + dataset: + type: mteb/emotion + name: MTEB EmotionClassification + config: default + split: test + revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 + metrics: + - type: accuracy + value: 67.39500000000001 + - type: f1 + value: 62.01837785021389 + - task: + type: Retrieval + dataset: + type: mteb/fever + name: MTEB FEVER + config: default + split: test + revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 + metrics: + - type: map_at_1 + value: 86.27 + - type: map_at_10 + value: 92.163 + - type: map_at_100 + value: 92.351 + - type: map_at_1000 + value: 92.36 + - type: map_at_3 + value: 91.36 + - type: map_at_5 + value: 91.888 + - type: mrr_at_1 + value: 92.72399999999999 + - type: mrr_at_10 + value: 95.789 + - type: mrr_at_100 + value: 95.80300000000001 + - type: mrr_at_1000 + value: 95.804 + - type: mrr_at_3 + value: 95.64200000000001 + - type: mrr_at_5 + value: 95.75 + - type: ndcg_at_1 + value: 92.72399999999999 + - type: ndcg_at_10 + value: 94.269 + - type: ndcg_at_100 + value: 94.794 + - type: ndcg_at_1000 + value: 94.94 + - type: ndcg_at_3 + value: 93.427 + - type: ndcg_at_5 + value: 93.914 + - type: precision_at_1 + value: 92.72399999999999 + - type: precision_at_10 + value: 11.007 + - type: precision_at_100 + value: 1.153 + - type: precision_at_1000 + value: 0.11800000000000001 + - type: precision_at_3 + value: 34.993 + - type: precision_at_5 + value: 21.542 + - type: recall_at_1 + value: 86.27 + - type: recall_at_10 + value: 97.031 + - type: recall_at_100 + value: 98.839 + - type: recall_at_1000 + value: 99.682 + - type: recall_at_3 + value: 94.741 + - type: recall_at_5 + value: 96.03 + - task: + type: Retrieval + dataset: + type: mteb/fiqa + name: MTEB FiQA2018 + config: default + split: test + revision: 27a168819829fe9bcd655c2df245fb19452e8e06 + metrics: + - type: map_at_1 + value: 29.561999999999998 + - type: map_at_10 + value: 48.52 + - type: map_at_100 + value: 50.753 + - type: map_at_1000 + value: 50.878 + - type: map_at_3 + value: 42.406 + - type: map_at_5 + value: 45.994 + - type: mrr_at_1 + value: 54.784 + - type: mrr_at_10 + value: 64.51400000000001 + - type: mrr_at_100 + value: 65.031 + - type: mrr_at_1000 + value: 65.05199999999999 + - type: mrr_at_3 + value: 62.474 + - type: mrr_at_5 + value: 63.562 + - type: ndcg_at_1 + value: 54.784 + - type: ndcg_at_10 + value: 57.138 + - type: ndcg_at_100 + value: 63.666999999999994 + - type: ndcg_at_1000 + value: 65.379 + - type: ndcg_at_3 + value: 52.589 + - type: ndcg_at_5 + value: 54.32599999999999 + - type: precision_at_1 + value: 54.784 + - type: precision_at_10 + value: 15.693999999999999 + - type: precision_at_100 + value: 2.259 + - type: precision_at_1000 + value: 0.256 + - type: precision_at_3 + value: 34.774 + - type: precision_at_5 + value: 25.772000000000002 + - type: recall_at_1 + value: 29.561999999999998 + - type: recall_at_10 + value: 64.708 + - type: recall_at_100 + value: 87.958 + - type: recall_at_1000 + value: 97.882 + - type: recall_at_3 + value: 48.394 + - type: recall_at_5 + value: 56.101 + - task: + type: Retrieval + dataset: + type: mteb/hotpotqa + name: MTEB HotpotQA + config: default + split: test + revision: ab518f4d6fcca38d87c25209f94beba119d02014 + metrics: + - type: map_at_1 + value: 43.72 + - type: map_at_10 + value: 71.905 + - type: map_at_100 + value: 72.685 + - type: map_at_1000 + value: 72.72800000000001 + - type: map_at_3 + value: 68.538 + - type: map_at_5 + value: 70.675 + - type: mrr_at_1 + value: 87.441 + - type: mrr_at_10 + value: 91.432 + - type: mrr_at_100 + value: 91.512 + - type: mrr_at_1000 + value: 91.513 + - type: mrr_at_3 + value: 90.923 + - type: mrr_at_5 + value: 91.252 + - type: ndcg_at_1 + value: 87.441 + - type: ndcg_at_10 + value: 79.212 + - type: ndcg_at_100 + value: 81.694 + - type: ndcg_at_1000 + value: 82.447 + - type: ndcg_at_3 + value: 74.746 + - type: ndcg_at_5 + value: 77.27199999999999 + - type: precision_at_1 + value: 87.441 + - type: precision_at_10 + value: 16.42 + - type: precision_at_100 + value: 1.833 + - type: precision_at_1000 + value: 0.193 + - type: precision_at_3 + value: 48.184 + - type: precision_at_5 + value: 30.897999999999996 + - type: recall_at_1 + value: 43.72 + - type: recall_at_10 + value: 82.1 + - type: recall_at_100 + value: 91.62700000000001 + - type: recall_at_1000 + value: 96.556 + - type: recall_at_3 + value: 72.275 + - type: recall_at_5 + value: 77.24499999999999 + - task: + type: Classification + dataset: + type: C-MTEB/IFlyTek-classification + name: MTEB IFlyTek + config: default + split: validation + revision: 421605374b29664c5fc098418fe20ada9bd55f8a + metrics: + - type: accuracy + value: 54.520969603693736 + - type: f1 + value: 42.359043311419626 + - task: + type: Classification + dataset: + type: mteb/imdb + name: MTEB ImdbClassification + config: default + split: test + revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 + metrics: + - type: accuracy + value: 96.72559999999999 + - type: ap + value: 95.01759461773742 + - type: f1 + value: 96.72429945397575 + - task: + type: Classification + dataset: + type: C-MTEB/JDReview-classification + name: MTEB JDReview + config: default + split: test + revision: b7c64bd89eb87f8ded463478346f76731f07bf8b + metrics: + - type: accuracy + value: 90.1688555347092 + - type: ap + value: 63.36583667477521 + - type: f1 + value: 85.6845016521436 + - task: + type: STS + dataset: + type: C-MTEB/LCQMC + name: MTEB LCQMC + config: default + split: test + revision: 17f9b096f80380fce5ed12a9be8be7784b337daf + metrics: + - type: cos_sim_pearson + value: 68.8503997749679 + - type: cos_sim_spearman + value: 74.15059291199371 + - type: euclidean_pearson + value: 73.01105331948172 + - type: euclidean_spearman + value: 74.15059069348803 + - type: manhattan_pearson + value: 72.80856655624557 + - type: manhattan_spearman + value: 73.95174793448955 + - task: + type: Reranking + dataset: + type: C-MTEB/Mmarco-reranking + name: MTEB MMarcoReranking + config: default + split: dev + revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 + metrics: + - type: map + value: 32.68592539803807 + - type: mrr + value: 31.58968253968254 + - task: + type: Retrieval + dataset: + type: C-MTEB/MMarcoRetrieval + name: MTEB MMarcoRetrieval + config: default + split: dev + revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 + metrics: + - type: map_at_1 + value: 71.242 + - type: map_at_10 + value: 80.01 + - type: map_at_100 + value: 80.269 + - type: map_at_1000 + value: 80.276 + - type: map_at_3 + value: 78.335 + - type: map_at_5 + value: 79.471 + - type: mrr_at_1 + value: 73.668 + - type: mrr_at_10 + value: 80.515 + - type: mrr_at_100 + value: 80.738 + - type: mrr_at_1000 + value: 80.744 + - type: mrr_at_3 + value: 79.097 + - type: mrr_at_5 + value: 80.045 + - type: ndcg_at_1 + value: 73.668 + - type: ndcg_at_10 + value: 83.357 + - type: ndcg_at_100 + value: 84.442 + - type: ndcg_at_1000 + value: 84.619 + - type: ndcg_at_3 + value: 80.286 + - type: ndcg_at_5 + value: 82.155 + - type: precision_at_1 + value: 73.668 + - type: precision_at_10 + value: 9.905 + - type: precision_at_100 + value: 1.043 + - type: precision_at_1000 + value: 0.106 + - type: precision_at_3 + value: 30.024 + - type: precision_at_5 + value: 19.017 + - type: recall_at_1 + value: 71.242 + - type: recall_at_10 + value: 93.11 + - type: recall_at_100 + value: 97.85000000000001 + - type: recall_at_1000 + value: 99.21900000000001 + - type: recall_at_3 + value: 85.137 + - type: recall_at_5 + value: 89.548 + - task: + type: Retrieval + dataset: + type: mteb/msmarco + name: MTEB MSMARCO + config: default + split: dev + revision: c5a29a104738b98a9e76336939199e264163d4a0 + metrics: + - type: map_at_1 + value: 22.006999999999998 + - type: map_at_10 + value: 34.994 + - type: map_at_100 + value: 36.183 + - type: map_at_1000 + value: 36.227 + - type: map_at_3 + value: 30.75 + - type: map_at_5 + value: 33.155 + - type: mrr_at_1 + value: 22.679 + - type: mrr_at_10 + value: 35.619 + - type: mrr_at_100 + value: 36.732 + - type: mrr_at_1000 + value: 36.77 + - type: mrr_at_3 + value: 31.44 + - type: mrr_at_5 + value: 33.811 + - type: ndcg_at_1 + value: 22.679 + - type: ndcg_at_10 + value: 42.376000000000005 + - type: ndcg_at_100 + value: 48.001 + - type: ndcg_at_1000 + value: 49.059999999999995 + - type: ndcg_at_3 + value: 33.727000000000004 + - type: ndcg_at_5 + value: 38.013000000000005 + - type: precision_at_1 + value: 22.679 + - type: precision_at_10 + value: 6.815 + - type: precision_at_100 + value: 0.962 + - type: precision_at_1000 + value: 0.105 + - type: precision_at_3 + value: 14.441 + - type: precision_at_5 + value: 10.817 + - type: recall_at_1 + value: 22.006999999999998 + - type: recall_at_10 + value: 65.158 + - type: recall_at_100 + value: 90.997 + - type: recall_at_1000 + value: 98.996 + - type: recall_at_3 + value: 41.646 + - type: recall_at_5 + value: 51.941 + - task: + type: Classification + dataset: + type: mteb/mtop_domain + name: MTEB MTOPDomainClassification (en) + config: en + split: test + revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf + metrics: + - type: accuracy + value: 97.55129958960327 + - type: f1 + value: 97.43464802675416 + - task: + type: Classification + dataset: + type: mteb/mtop_intent + name: MTEB MTOPIntentClassification (en) + config: en + split: test + revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba + metrics: + - type: accuracy + value: 90.4719562243502 + - type: f1 + value: 70.76460034443902 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_intent + name: MTEB MassiveIntentClassification (en) + config: en + split: test + revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 + metrics: + - type: accuracy + value: 83.49024882313383 + - type: f1 + value: 81.44067057564666 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_scenario + name: MTEB MassiveScenarioClassification (en) + config: en + split: test + revision: 7d571f92784cd94a019292a1f45445077d0ef634 + metrics: + - type: accuracy + value: 87.23268325487558 + - type: f1 + value: 86.36737921996752 + - task: + type: Retrieval + dataset: + type: C-MTEB/MedicalRetrieval + name: MTEB MedicalRetrieval + config: default + split: dev + revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 + metrics: + - type: map_at_1 + value: 56.89999999999999 + - type: map_at_10 + value: 63.438 + - type: map_at_100 + value: 63.956 + - type: map_at_1000 + value: 63.991 + - type: map_at_3 + value: 61.983 + - type: map_at_5 + value: 62.778 + - type: mrr_at_1 + value: 56.99999999999999 + - type: mrr_at_10 + value: 63.483000000000004 + - type: mrr_at_100 + value: 63.993 + - type: mrr_at_1000 + value: 64.02799999999999 + - type: mrr_at_3 + value: 62.017 + - type: mrr_at_5 + value: 62.812 + - type: ndcg_at_1 + value: 56.89999999999999 + - type: ndcg_at_10 + value: 66.61 + - type: ndcg_at_100 + value: 69.387 + - type: ndcg_at_1000 + value: 70.327 + - type: ndcg_at_3 + value: 63.583999999999996 + - type: ndcg_at_5 + value: 65.0 + - type: precision_at_1 + value: 56.89999999999999 + - type: precision_at_10 + value: 7.66 + - type: precision_at_100 + value: 0.902 + - type: precision_at_1000 + value: 0.098 + - type: precision_at_3 + value: 22.733 + - type: precision_at_5 + value: 14.32 + - type: recall_at_1 + value: 56.89999999999999 + - type: recall_at_10 + value: 76.6 + - type: recall_at_100 + value: 90.2 + - type: recall_at_1000 + value: 97.6 + - type: recall_at_3 + value: 68.2 + - type: recall_at_5 + value: 71.6 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-p2p + name: MTEB MedrxivClusteringP2P + config: default + split: test + revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 + metrics: + - type: v_measure + value: 40.32149153753394 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-s2s + name: MTEB MedrxivClusteringS2S + config: default + split: test + revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 + metrics: + - type: v_measure + value: 39.40319973495386 + - task: + type: Reranking + dataset: + type: mteb/mind_small + name: MTEB MindSmallReranking + config: default + split: test + revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 + metrics: + - type: map + value: 33.9769104898534 + - type: mrr + value: 35.32831430710564 + - task: + type: Classification + dataset: + type: C-MTEB/MultilingualSentiment-classification + name: MTEB MultilingualSentiment + config: default + split: validation + revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a + metrics: + - type: accuracy + value: 81.80666666666667 + - type: f1 + value: 81.83278699395508 + - task: + type: Retrieval + dataset: + type: mteb/nfcorpus + name: MTEB NFCorpus + config: default + split: test + revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 + metrics: + - type: map_at_1 + value: 6.3 + - type: map_at_10 + value: 14.151 + - type: map_at_100 + value: 18.455 + - type: map_at_1000 + value: 20.186999999999998 + - type: map_at_3 + value: 10.023 + - type: map_at_5 + value: 11.736 + - type: mrr_at_1 + value: 49.536 + - type: mrr_at_10 + value: 58.516 + - type: mrr_at_100 + value: 59.084 + - type: mrr_at_1000 + value: 59.114 + - type: mrr_at_3 + value: 56.45 + - type: mrr_at_5 + value: 57.642 + - type: ndcg_at_1 + value: 47.522999999999996 + - type: ndcg_at_10 + value: 38.4 + - type: ndcg_at_100 + value: 35.839999999999996 + - type: ndcg_at_1000 + value: 44.998 + - type: ndcg_at_3 + value: 43.221 + - type: ndcg_at_5 + value: 40.784 + - type: precision_at_1 + value: 49.536 + - type: precision_at_10 + value: 28.977999999999998 + - type: precision_at_100 + value: 9.378 + - type: precision_at_1000 + value: 2.2769999999999997 + - type: precision_at_3 + value: 40.454 + - type: precision_at_5 + value: 35.418 + - type: recall_at_1 + value: 6.3 + - type: recall_at_10 + value: 19.085 + - type: recall_at_100 + value: 38.18 + - type: recall_at_1000 + value: 71.219 + - type: recall_at_3 + value: 11.17 + - type: recall_at_5 + value: 13.975999999999999 + - task: + type: Retrieval + dataset: + type: mteb/nq + name: MTEB NQ + config: default + split: test + revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 + metrics: + - type: map_at_1 + value: 43.262 + - type: map_at_10 + value: 60.387 + - type: map_at_100 + value: 61.102000000000004 + - type: map_at_1000 + value: 61.111000000000004 + - type: map_at_3 + value: 56.391999999999996 + - type: map_at_5 + value: 58.916000000000004 + - type: mrr_at_1 + value: 48.725 + - type: mrr_at_10 + value: 62.812999999999995 + - type: mrr_at_100 + value: 63.297000000000004 + - type: mrr_at_1000 + value: 63.304 + - type: mrr_at_3 + value: 59.955999999999996 + - type: mrr_at_5 + value: 61.785999999999994 + - type: ndcg_at_1 + value: 48.696 + - type: ndcg_at_10 + value: 67.743 + - type: ndcg_at_100 + value: 70.404 + - type: ndcg_at_1000 + value: 70.60600000000001 + - type: ndcg_at_3 + value: 60.712999999999994 + - type: ndcg_at_5 + value: 64.693 + - type: precision_at_1 + value: 48.696 + - type: precision_at_10 + value: 10.513 + - type: precision_at_100 + value: 1.196 + - type: precision_at_1000 + value: 0.121 + - type: precision_at_3 + value: 27.221 + - type: precision_at_5 + value: 18.701999999999998 + - type: recall_at_1 + value: 43.262 + - type: recall_at_10 + value: 87.35300000000001 + - type: recall_at_100 + value: 98.31299999999999 + - type: recall_at_1000 + value: 99.797 + - type: recall_at_3 + value: 69.643 + - type: recall_at_5 + value: 78.645 + - task: + type: PairClassification + dataset: + type: C-MTEB/OCNLI + name: MTEB Ocnli + config: default + split: validation + revision: 66e76a618a34d6d565d5538088562851e6daa7ec + metrics: + - type: cos_sim_accuracy + value: 72.65836491608013 + - type: cos_sim_ap + value: 78.75807247519593 + - type: cos_sim_f1 + value: 74.84662576687117 + - type: cos_sim_precision + value: 63.97003745318352 + - type: cos_sim_recall + value: 90.17951425554382 + - type: dot_accuracy + value: 72.65836491608013 + - type: dot_ap + value: 78.75807247519593 + - type: dot_f1 + value: 74.84662576687117 + - type: dot_precision + value: 63.97003745318352 + - type: dot_recall + value: 90.17951425554382 + - type: euclidean_accuracy + value: 72.65836491608013 + - type: euclidean_ap + value: 78.75807247519593 + - type: euclidean_f1 + value: 74.84662576687117 + - type: euclidean_precision + value: 63.97003745318352 + - type: euclidean_recall + value: 90.17951425554382 + - type: manhattan_accuracy + value: 72.00866269626421 + - type: manhattan_ap + value: 78.34663376353235 + - type: manhattan_f1 + value: 74.13234613604813 + - type: manhattan_precision + value: 65.98023064250413 + - type: manhattan_recall + value: 84.58289334741288 + - type: max_accuracy + value: 72.65836491608013 + - type: max_ap + value: 78.75807247519593 + - type: max_f1 + value: 74.84662576687117 + - task: + type: Classification + dataset: + type: C-MTEB/OnlineShopping-classification + name: MTEB OnlineShopping + config: default + split: test + revision: e610f2ebd179a8fda30ae534c3878750a96db120 + metrics: + - type: accuracy + value: 94.46999999999998 + - type: ap + value: 93.56401511160975 + - type: f1 + value: 94.46692790889986 + - task: + type: STS + dataset: + type: C-MTEB/PAWSX + name: MTEB PAWSX + config: default + split: test + revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 + metrics: + - type: cos_sim_pearson + value: 15.232590709271829 + - type: cos_sim_spearman + value: 17.204830998481093 + - type: euclidean_pearson + value: 19.543519063265673 + - type: euclidean_spearman + value: 17.204830998481093 + - type: manhattan_pearson + value: 19.5722663367917 + - type: manhattan_spearman + value: 17.25656568963978 + - task: + type: STS + dataset: + type: C-MTEB/QBQTC + name: MTEB QBQTC + config: default + split: test + revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 + metrics: + - type: cos_sim_pearson + value: 34.81965984725406 + - type: cos_sim_spearman + value: 37.697257783907645 + - type: euclidean_pearson + value: 35.87624912573427 + - type: euclidean_spearman + value: 37.69725778300291 + - type: manhattan_pearson + value: 35.69021326773646 + - type: manhattan_spearman + value: 37.54369033366458 + - task: + type: Retrieval + dataset: + type: mteb/quora + name: MTEB QuoraRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 69.952 + - type: map_at_10 + value: 84.134 + - type: map_at_100 + value: 84.795 + - type: map_at_1000 + value: 84.809 + - type: map_at_3 + value: 81.085 + - type: map_at_5 + value: 82.976 + - type: mrr_at_1 + value: 80.56 + - type: mrr_at_10 + value: 87.105 + - type: mrr_at_100 + value: 87.20700000000001 + - type: mrr_at_1000 + value: 87.208 + - type: mrr_at_3 + value: 86.118 + - type: mrr_at_5 + value: 86.79299999999999 + - type: ndcg_at_1 + value: 80.57 + - type: ndcg_at_10 + value: 88.047 + - type: ndcg_at_100 + value: 89.266 + - type: ndcg_at_1000 + value: 89.34299999999999 + - type: ndcg_at_3 + value: 85.052 + - type: ndcg_at_5 + value: 86.68299999999999 + - type: precision_at_1 + value: 80.57 + - type: precision_at_10 + value: 13.439 + - type: precision_at_100 + value: 1.536 + - type: precision_at_1000 + value: 0.157 + - type: precision_at_3 + value: 37.283 + - type: precision_at_5 + value: 24.558 + - type: recall_at_1 + value: 69.952 + - type: recall_at_10 + value: 95.599 + - type: recall_at_100 + value: 99.67099999999999 + - type: recall_at_1000 + value: 99.983 + - type: recall_at_3 + value: 87.095 + - type: recall_at_5 + value: 91.668 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering + name: MTEB RedditClustering + config: default + split: test + revision: 24640382cdbf8abc73003fb0fa6d111a705499eb + metrics: + - type: v_measure + value: 70.12802769698337 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering-p2p + name: MTEB RedditClusteringP2P + config: default + split: test + revision: 282350215ef01743dc01b456c7f5241fa8937f16 + metrics: + - type: v_measure + value: 71.19047621740276 + - task: + type: Retrieval + dataset: + type: mteb/scidocs + name: MTEB SCIDOCS + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 6.208 + - type: map_at_10 + value: 17.036 + - type: map_at_100 + value: 20.162 + - type: map_at_1000 + value: 20.552 + - type: map_at_3 + value: 11.591999999999999 + - type: map_at_5 + value: 14.349 + - type: mrr_at_1 + value: 30.599999999999998 + - type: mrr_at_10 + value: 43.325 + - type: mrr_at_100 + value: 44.281 + - type: mrr_at_1000 + value: 44.31 + - type: mrr_at_3 + value: 39.300000000000004 + - type: mrr_at_5 + value: 41.730000000000004 + - type: ndcg_at_1 + value: 30.599999999999998 + - type: ndcg_at_10 + value: 27.378000000000004 + - type: ndcg_at_100 + value: 37.768 + - type: ndcg_at_1000 + value: 43.275000000000006 + - type: ndcg_at_3 + value: 25.167 + - type: ndcg_at_5 + value: 22.537 + - type: precision_at_1 + value: 30.599999999999998 + - type: precision_at_10 + value: 14.46 + - type: precision_at_100 + value: 2.937 + - type: precision_at_1000 + value: 0.424 + - type: precision_at_3 + value: 23.666999999999998 + - type: precision_at_5 + value: 20.14 + - type: recall_at_1 + value: 6.208 + - type: recall_at_10 + value: 29.29 + - type: recall_at_100 + value: 59.565 + - type: recall_at_1000 + value: 85.963 + - type: recall_at_3 + value: 14.407 + - type: recall_at_5 + value: 20.412 + - task: + type: STS + dataset: + type: mteb/sickr-sts + name: MTEB SICK-R + config: default + split: test + revision: a6ea5a8cab320b040a23452cc28066d9beae2cee + metrics: + - type: cos_sim_pearson + value: 82.65489797062479 + - type: cos_sim_spearman + value: 75.34808277034776 + - type: euclidean_pearson + value: 79.28097508609059 + - type: euclidean_spearman + value: 75.3480824481771 + - type: manhattan_pearson + value: 78.83529262858895 + - type: manhattan_spearman + value: 74.96318170787025 + - task: + type: STS + dataset: + type: mteb/sts12-sts + name: MTEB STS12 + config: default + split: test + revision: a0d554a64d88156834ff5ae9920b964011b16384 + metrics: + - type: cos_sim_pearson + value: 85.06920163624117 + - type: cos_sim_spearman + value: 77.24549887905519 + - type: euclidean_pearson + value: 85.58740280635266 + - type: euclidean_spearman + value: 77.24652170306867 + - type: manhattan_pearson + value: 85.77917470895854 + - type: manhattan_spearman + value: 77.54426264008778 + - task: + type: STS + dataset: + type: mteb/sts13-sts + name: MTEB STS13 + config: default + split: test + revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca + metrics: + - type: cos_sim_pearson + value: 80.9762185094084 + - type: cos_sim_spearman + value: 80.98090253728394 + - type: euclidean_pearson + value: 80.88451512135202 + - type: euclidean_spearman + value: 80.98090253728394 + - type: manhattan_pearson + value: 80.7606664599805 + - type: manhattan_spearman + value: 80.87197716950068 + - task: + type: STS + dataset: + type: mteb/sts14-sts + name: MTEB STS14 + config: default + split: test + revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 + metrics: + - type: cos_sim_pearson + value: 81.91239166620251 + - type: cos_sim_spearman + value: 76.36798509005328 + - type: euclidean_pearson + value: 80.6393872615655 + - type: euclidean_spearman + value: 76.36798836339655 + - type: manhattan_pearson + value: 80.50765898709096 + - type: manhattan_spearman + value: 76.31958999372227 + - task: + type: STS + dataset: + type: mteb/sts15-sts + name: MTEB STS15 + config: default + split: test + revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 + metrics: + - type: cos_sim_pearson + value: 83.68800355225011 + - type: cos_sim_spearman + value: 84.47549220803403 + - type: euclidean_pearson + value: 83.86859896384159 + - type: euclidean_spearman + value: 84.47551564954756 + - type: manhattan_pearson + value: 83.74201103044383 + - type: manhattan_spearman + value: 84.39903759718152 + - task: + type: STS + dataset: + type: mteb/sts16-sts + name: MTEB STS16 + config: default + split: test + revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 + metrics: + - type: cos_sim_pearson + value: 78.24197302553398 + - type: cos_sim_spearman + value: 79.44526946553684 + - type: euclidean_pearson + value: 79.12747636563053 + - type: euclidean_spearman + value: 79.44526946553684 + - type: manhattan_pearson + value: 78.94407504115144 + - type: manhattan_spearman + value: 79.24858249553934 + - task: + type: STS + dataset: + type: mteb/sts17-crosslingual-sts + name: MTEB STS17 (en-en) + config: en-en + split: test + revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d + metrics: + - type: cos_sim_pearson + value: 89.15329071763895 + - type: cos_sim_spearman + value: 88.67251952242073 + - type: euclidean_pearson + value: 89.16908249259637 + - type: euclidean_spearman + value: 88.67251952242073 + - type: manhattan_pearson + value: 89.1279735094785 + - type: manhattan_spearman + value: 88.81731953658254 + - task: + type: STS + dataset: + type: mteb/sts22-crosslingual-sts + name: MTEB STS22 (en) + config: en + split: test + revision: eea2b4fe26a775864c896887d910b76a8098ad3f + metrics: + - type: cos_sim_pearson + value: 69.44962535524695 + - type: cos_sim_spearman + value: 71.75861316291065 + - type: euclidean_pearson + value: 72.42347748883483 + - type: euclidean_spearman + value: 71.75861316291065 + - type: manhattan_pearson + value: 72.57545073534365 + - type: manhattan_spearman + value: 71.90087671205625 + - task: + type: STS + dataset: + type: C-MTEB/STSB + name: MTEB STSB + config: default + split: test + revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 + metrics: + - type: cos_sim_pearson + value: 77.39283860361535 + - type: cos_sim_spearman + value: 77.14577975930179 + - type: euclidean_pearson + value: 76.64560889817044 + - type: euclidean_spearman + value: 77.14577975930179 + - type: manhattan_pearson + value: 76.82848456242104 + - type: manhattan_spearman + value: 77.37708521460667 + - task: + type: STS + dataset: + type: mteb/stsbenchmark-sts + name: MTEB STSBenchmark + config: default + split: test + revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 + metrics: + - type: cos_sim_pearson + value: 84.14036697885552 + - type: cos_sim_spearman + value: 83.10901632378086 + - type: euclidean_pearson + value: 83.59991244380554 + - type: euclidean_spearman + value: 83.10901632378086 + - type: manhattan_pearson + value: 83.56632266895113 + - type: manhattan_spearman + value: 83.17610542379353 + - task: + type: Reranking + dataset: + type: mteb/scidocs-reranking + name: MTEB SciDocsRR + config: default + split: test + revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab + metrics: + - type: map + value: 88.98026856845443 + - type: mrr + value: 96.80987494712984 + - task: + type: Retrieval + dataset: + type: mteb/scifact + name: MTEB SciFact + config: default + split: test + revision: 0228b52cf27578f30900b9e5271d331663a030d7 + metrics: + - type: map_at_1 + value: 41.661 + - type: map_at_10 + value: 55.492 + - type: map_at_100 + value: 56.237 + - type: map_at_1000 + value: 56.255 + - type: map_at_3 + value: 51.05 + - type: map_at_5 + value: 54.01200000000001 + - type: mrr_at_1 + value: 44.0 + - type: mrr_at_10 + value: 56.443 + - type: mrr_at_100 + value: 57.13700000000001 + - type: mrr_at_1000 + value: 57.152 + - type: mrr_at_3 + value: 52.944 + - type: mrr_at_5 + value: 55.37800000000001 + - type: ndcg_at_1 + value: 44.0 + - type: ndcg_at_10 + value: 62.312999999999995 + - type: ndcg_at_100 + value: 65.63900000000001 + - type: ndcg_at_1000 + value: 66.019 + - type: ndcg_at_3 + value: 54.67999999999999 + - type: ndcg_at_5 + value: 59.284000000000006 + - type: precision_at_1 + value: 44.0 + - type: precision_at_10 + value: 9.367 + - type: precision_at_100 + value: 1.0999999999999999 + - type: precision_at_1000 + value: 0.11299999999999999 + - type: precision_at_3 + value: 22.778000000000002 + - type: precision_at_5 + value: 16.467000000000002 + - type: recall_at_1 + value: 41.661 + - type: recall_at_10 + value: 82.306 + - type: recall_at_100 + value: 97.167 + - type: recall_at_1000 + value: 100.0 + - type: recall_at_3 + value: 62.461 + - type: recall_at_5 + value: 73.411 + - task: + type: PairClassification + dataset: + type: mteb/sprintduplicatequestions-pairclassification + name: MTEB SprintDuplicateQuestions + config: default + split: test + revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 + metrics: + - type: cos_sim_accuracy + value: 99.90693069306931 + - type: cos_sim_ap + value: 97.86562522779887 + - type: cos_sim_f1 + value: 95.27162977867204 + - type: cos_sim_precision + value: 95.8502024291498 + - type: cos_sim_recall + value: 94.69999999999999 + - type: dot_accuracy + value: 99.90693069306931 + - type: dot_ap + value: 97.86562522779887 + - type: dot_f1 + value: 95.27162977867204 + - type: dot_precision + value: 95.8502024291498 + - type: dot_recall + value: 94.69999999999999 + - type: euclidean_accuracy + value: 99.90693069306931 + - type: euclidean_ap + value: 97.86562522779887 + - type: euclidean_f1 + value: 95.27162977867204 + - type: euclidean_precision + value: 95.8502024291498 + - type: euclidean_recall + value: 94.69999999999999 + - type: manhattan_accuracy + value: 99.90693069306931 + - type: manhattan_ap + value: 97.85527044211135 + - type: manhattan_f1 + value: 95.27638190954774 + - type: manhattan_precision + value: 95.75757575757575 + - type: manhattan_recall + value: 94.8 + - type: max_accuracy + value: 99.90693069306931 + - type: max_ap + value: 97.86562522779887 + - type: max_f1 + value: 95.27638190954774 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering + name: MTEB StackExchangeClustering + config: default + split: test + revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 + metrics: + - type: v_measure + value: 78.89230351770412 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering-p2p + name: MTEB StackExchangeClusteringP2P + config: default + split: test + revision: 815ca46b2622cec33ccafc3735d572c266efdb44 + metrics: + - type: v_measure + value: 47.52328347080355 + - task: + type: Reranking + dataset: + type: mteb/stackoverflowdupquestions-reranking + name: MTEB StackOverflowDupQuestions + config: default + split: test + revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 + metrics: + - type: map + value: 57.74702024461137 + - type: mrr + value: 58.88074548001018 + - task: + type: Summarization + dataset: + type: mteb/summeval + name: MTEB SummEval + config: default + split: test + revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c + metrics: + - type: cos_sim_pearson + value: 30.047929797503592 + - type: cos_sim_spearman + value: 29.465371781983567 + - type: dot_pearson + value: 30.047927690552335 + - type: dot_spearman + value: 29.465371781983567 + - task: + type: Classification + dataset: + type: C-MTEB/TNews-classification + name: MTEB TNews + config: default + split: validation + revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 + metrics: + - type: accuracy + value: 56.691999999999986 + - type: f1 + value: 54.692084702788065 + - task: + type: Retrieval + dataset: + type: mteb/trec-covid + name: MTEB TRECCOVID + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 0.181 + - type: map_at_10 + value: 1.2 + - type: map_at_100 + value: 6.078 + - type: map_at_1000 + value: 14.940000000000001 + - type: map_at_3 + value: 0.45599999999999996 + - type: map_at_5 + value: 0.692 + - type: mrr_at_1 + value: 66.0 + - type: mrr_at_10 + value: 75.819 + - type: mrr_at_100 + value: 76.168 + - type: mrr_at_1000 + value: 76.168 + - type: mrr_at_3 + value: 72.667 + - type: mrr_at_5 + value: 74.86699999999999 + - type: ndcg_at_1 + value: 59.0 + - type: ndcg_at_10 + value: 52.60399999999999 + - type: ndcg_at_100 + value: 38.049 + - type: ndcg_at_1000 + value: 38.576 + - type: ndcg_at_3 + value: 57.235 + - type: ndcg_at_5 + value: 56.147000000000006 + - type: precision_at_1 + value: 66.0 + - type: precision_at_10 + value: 55.2 + - type: precision_at_100 + value: 38.78 + - type: precision_at_1000 + value: 16.986 + - type: precision_at_3 + value: 62.666999999999994 + - type: precision_at_5 + value: 60.8 + - type: recall_at_1 + value: 0.181 + - type: recall_at_10 + value: 1.471 + - type: recall_at_100 + value: 9.748999999999999 + - type: recall_at_1000 + value: 37.667 + - type: recall_at_3 + value: 0.49300000000000005 + - type: recall_at_5 + value: 0.7979999999999999 + - task: + type: Clustering + dataset: + type: C-MTEB/ThuNewsClusteringS2S + name: MTEB ThuNewsClusteringS2S + config: default + split: test + revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d + metrics: + - type: v_measure + value: 77.04148998956299 + - task: + type: Retrieval + dataset: + type: mteb/touche2020 + name: MTEB Touche2020 + config: default + split: test + revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f + metrics: + - type: map_at_1 + value: 1.936 + - type: map_at_10 + value: 8.942 + - type: map_at_100 + value: 14.475999999999999 + - type: map_at_1000 + value: 16.156000000000002 + - type: map_at_3 + value: 4.865 + - type: map_at_5 + value: 6.367000000000001 + - type: mrr_at_1 + value: 26.531 + - type: mrr_at_10 + value: 42.846000000000004 + - type: mrr_at_100 + value: 43.441 + - type: mrr_at_1000 + value: 43.441 + - type: mrr_at_3 + value: 36.735 + - type: mrr_at_5 + value: 40.510000000000005 + - type: ndcg_at_1 + value: 24.490000000000002 + - type: ndcg_at_10 + value: 23.262 + - type: ndcg_at_100 + value: 34.959 + - type: ndcg_at_1000 + value: 47.258 + - type: ndcg_at_3 + value: 25.27 + - type: ndcg_at_5 + value: 24.246000000000002 + - type: precision_at_1 + value: 26.531 + - type: precision_at_10 + value: 20.408 + - type: precision_at_100 + value: 7.306 + - type: precision_at_1000 + value: 1.541 + - type: precision_at_3 + value: 26.531 + - type: precision_at_5 + value: 24.082 + - type: recall_at_1 + value: 1.936 + - type: recall_at_10 + value: 15.712000000000002 + - type: recall_at_100 + value: 45.451 + - type: recall_at_1000 + value: 83.269 + - type: recall_at_3 + value: 6.442 + - type: recall_at_5 + value: 9.151 + - task: + type: Classification + dataset: + type: mteb/toxic_conversations_50k + name: MTEB ToxicConversationsClassification + config: default + split: test + revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c + metrics: + - type: accuracy + value: 86.564 + - type: ap + value: 34.58766846081731 + - type: f1 + value: 72.32759831978161 + - task: + type: Classification + dataset: + type: mteb/tweet_sentiment_extraction + name: MTEB TweetSentimentExtractionClassification + config: default + split: test + revision: d604517c81ca91fe16a244d1248fc021f9ecee7a + metrics: + - type: accuracy + value: 77.80418788907753 + - type: f1 + value: 78.1047638421972 + - task: + type: Clustering + dataset: + type: mteb/twentynewsgroups-clustering + name: MTEB TwentyNewsgroupsClustering + config: default + split: test + revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 + metrics: + - type: v_measure + value: 59.20888659980063 + - task: + type: PairClassification + dataset: + type: mteb/twittersemeval2015-pairclassification + name: MTEB TwitterSemEval2015 + config: default + split: test + revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 + metrics: + - type: cos_sim_accuracy + value: 85.45627943017226 + - type: cos_sim_ap + value: 72.25550061847534 + - type: cos_sim_f1 + value: 66.0611487783037 + - type: cos_sim_precision + value: 64.11720884032779 + - type: cos_sim_recall + value: 68.12664907651715 + - type: dot_accuracy + value: 85.45627943017226 + - type: dot_ap + value: 72.25574305366213 + - type: dot_f1 + value: 66.0611487783037 + - type: dot_precision + value: 64.11720884032779 + - type: dot_recall + value: 68.12664907651715 + - type: euclidean_accuracy + value: 85.45627943017226 + - type: euclidean_ap + value: 72.2557084446673 + - type: euclidean_f1 + value: 66.0611487783037 + - type: euclidean_precision + value: 64.11720884032779 + - type: euclidean_recall + value: 68.12664907651715 + - type: manhattan_accuracy + value: 85.32514752339513 + - type: manhattan_ap + value: 71.52919143472248 + - type: manhattan_f1 + value: 65.60288251190322 + - type: manhattan_precision + value: 64.02913840743531 + - type: manhattan_recall + value: 67.25593667546174 + - type: max_accuracy + value: 85.45627943017226 + - type: max_ap + value: 72.25574305366213 + - type: max_f1 + value: 66.0611487783037 + - task: + type: PairClassification + dataset: + type: mteb/twitterurlcorpus-pairclassification + name: MTEB TwitterURLCorpus + config: default + split: test + revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf + metrics: + - type: cos_sim_accuracy + value: 88.34167733923235 + - type: cos_sim_ap + value: 84.58587730660244 + - type: cos_sim_f1 + value: 77.14170010676287 + - type: cos_sim_precision + value: 73.91181657848324 + - type: cos_sim_recall + value: 80.66676932553126 + - type: dot_accuracy + value: 88.34167733923235 + - type: dot_ap + value: 84.58585083616217 + - type: dot_f1 + value: 77.14170010676287 + - type: dot_precision + value: 73.91181657848324 + - type: dot_recall + value: 80.66676932553126 + - type: euclidean_accuracy + value: 88.34167733923235 + - type: euclidean_ap + value: 84.5858781355044 + - type: euclidean_f1 + value: 77.14170010676287 + - type: euclidean_precision + value: 73.91181657848324 + - type: euclidean_recall + value: 80.66676932553126 + - type: manhattan_accuracy + value: 88.28152287809989 + - type: manhattan_ap + value: 84.53184837110165 + - type: manhattan_f1 + value: 77.13582823915313 + - type: manhattan_precision + value: 74.76156069364161 + - type: manhattan_recall + value: 79.66584539574993 + - type: max_accuracy + value: 88.34167733923235 + - type: max_ap + value: 84.5858781355044 + - type: max_f1 + value: 77.14170010676287 + - task: + type: Retrieval + dataset: + type: C-MTEB/VideoRetrieval + name: MTEB VideoRetrieval + config: default + split: dev + revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 + metrics: + - type: map_at_1 + value: 66.10000000000001 + - type: map_at_10 + value: 75.238 + - type: map_at_100 + value: 75.559 + - type: map_at_1000 + value: 75.565 + - type: map_at_3 + value: 73.68299999999999 + - type: map_at_5 + value: 74.63300000000001 + - type: mrr_at_1 + value: 66.10000000000001 + - type: mrr_at_10 + value: 75.238 + - type: mrr_at_100 + value: 75.559 + - type: mrr_at_1000 + value: 75.565 + - type: mrr_at_3 + value: 73.68299999999999 + - type: mrr_at_5 + value: 74.63300000000001 + - type: ndcg_at_1 + value: 66.10000000000001 + - type: ndcg_at_10 + value: 79.25999999999999 + - type: ndcg_at_100 + value: 80.719 + - type: ndcg_at_1000 + value: 80.862 + - type: ndcg_at_3 + value: 76.08200000000001 + - type: ndcg_at_5 + value: 77.782 + - type: precision_at_1 + value: 66.10000000000001 + - type: precision_at_10 + value: 9.17 + - type: precision_at_100 + value: 0.983 + - type: precision_at_1000 + value: 0.099 + - type: precision_at_3 + value: 27.667 + - type: precision_at_5 + value: 17.419999999999998 + - type: recall_at_1 + value: 66.10000000000001 + - type: recall_at_10 + value: 91.7 + - type: recall_at_100 + value: 98.3 + - type: recall_at_1000 + value: 99.4 + - type: recall_at_3 + value: 83.0 + - type: recall_at_5 + value: 87.1 + - task: + type: Classification + dataset: + type: C-MTEB/waimai-classification + name: MTEB Waimai + config: default + split: test + revision: 339287def212450dcaa9df8c22bf93e9980c7023 + metrics: + - type: accuracy + value: 91.13 + - type: ap + value: 79.55231335947015 + - type: f1 + value: 89.63091922203914 + - task: + type: STS + dataset: + type: C-MTEB/AFQMC + name: MTEB AFQMC + config: default + split: validation + revision: b44c3b011063adb25877c13823db83bb193913c4 + metrics: + - type: cos_sim_pearson + value: 55.46303883144227 + - type: cos_sim_spearman + value: 59.66708815497073 + - type: euclidean_pearson + value: 57.81360946949099 + - type: euclidean_spearman + value: 59.66710825926347 + - type: manhattan_pearson + value: 57.723697562189344 + - type: manhattan_spearman + value: 59.55004095814257 + - task: + type: STS + dataset: + type: C-MTEB/ATEC + name: MTEB ATEC + config: default + split: test + revision: 0f319b1142f28d00e055a6770f3f726ae9b7d865 + metrics: + - type: cos_sim_pearson + value: 52.381881068686894 + - type: cos_sim_spearman + value: 55.468235529709766 + - type: euclidean_pearson + value: 56.974786979175086 + - type: euclidean_spearman + value: 55.468231026153745 + - type: manhattan_pearson + value: 56.944671325662576 + - type: manhattan_spearman + value: 55.39037386224014 + - task: + type: Classification + dataset: + type: mteb/amazon_polarity + name: MTEB AmazonPolarityClassification + config: default + split: test + revision: e2d317d38cd51312af73b3d32a06d1a08b442046 + metrics: + - type: accuracy + value: 97.3258 + - type: ap + value: 95.91845683387056 + - type: f1 + value: 97.32526074864263 + - task: + type: Classification + dataset: + type: mteb/amazon_reviews_multi + name: MTEB AmazonReviewsClassification (zh) + config: zh + split: test + revision: 1399c76144fd37290681b995c656ef9b2e06e26d + metrics: + - type: accuracy + value: 55.099999999999994 + - type: f1 + value: 53.115528412999666 + - task: + type: Retrieval + dataset: + type: mteb/arguana + name: MTEB ArguAna + config: default + split: test + revision: c22ab2a51041ffd869aaddef7af8d8215647e41a + metrics: + - type: map_at_1 + value: 40.541 + - type: map_at_10 + value: 56.315000000000005 + - type: map_at_100 + value: 56.824 + - type: map_at_1000 + value: 56.825 + - type: map_at_3 + value: 51.778 + - type: map_at_5 + value: 54.623 + - type: mrr_at_1 + value: 41.038000000000004 + - type: mrr_at_10 + value: 56.532000000000004 + - type: mrr_at_100 + value: 57.034 + - type: mrr_at_1000 + value: 57.034 + - type: mrr_at_3 + value: 52.015 + - type: mrr_at_5 + value: 54.835 + - type: ndcg_at_1 + value: 40.541 + - type: ndcg_at_10 + value: 64.596 + - type: ndcg_at_100 + value: 66.656 + - type: ndcg_at_1000 + value: 66.666 + - type: ndcg_at_3 + value: 55.415000000000006 + - type: ndcg_at_5 + value: 60.527 + - type: precision_at_1 + value: 40.541 + - type: precision_at_10 + value: 9.083 + - type: precision_at_100 + value: 0.996 + - type: precision_at_1000 + value: 0.1 + - type: precision_at_3 + value: 21.977 + - type: precision_at_5 + value: 15.661 + - type: recall_at_1 + value: 40.541 + - type: recall_at_10 + value: 90.825 + - type: recall_at_100 + value: 99.57300000000001 + - type: recall_at_1000 + value: 99.644 + - type: recall_at_3 + value: 65.932 + - type: recall_at_5 + value: 78.307 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-p2p + name: MTEB ArxivClusteringP2P + config: default + split: test + revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d + metrics: + - type: v_measure + value: 54.96111428218386 + - task: + type: Clustering + dataset: + type: mteb/arxiv-clustering-s2s + name: MTEB ArxivClusteringS2S + config: default + split: test + revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 + metrics: + - type: v_measure + value: 50.637711388838945 + - task: + type: Reranking + dataset: + type: mteb/askubuntudupquestions-reranking + name: MTEB AskUbuntuDupQuestions + config: default + split: test + revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 + metrics: + - type: map + value: 64.0741897266483 + - type: mrr + value: 76.11440882909028 + - task: + type: STS + dataset: + type: mteb/biosses-sts + name: MTEB BIOSSES + config: default + split: test + revision: d3fb88f8f02e40887cd149695127462bbcf29b4a + metrics: + - type: cos_sim_pearson + value: 86.2557839280406 + - type: cos_sim_spearman + value: 82.58200216886888 + - type: euclidean_pearson + value: 84.80588838508498 + - type: euclidean_spearman + value: 82.58200216886888 + - type: manhattan_pearson + value: 84.53082035185592 + - type: manhattan_spearman + value: 82.4964580510134 + - task: + type: STS + dataset: + type: C-MTEB/BQ + name: MTEB BQ + config: default + split: test + revision: e3dda5e115e487b39ec7e618c0c6a29137052a55 + metrics: + - type: cos_sim_pearson + value: 65.53432474956654 + - type: cos_sim_spearman + value: 66.8014310403835 + - type: euclidean_pearson + value: 65.59442518434007 + - type: euclidean_spearman + value: 66.80144143248799 + - type: manhattan_pearson + value: 65.55990611112435 + - type: manhattan_spearman + value: 66.77720657746703 + - task: + type: Classification + dataset: + type: mteb/banking77 + name: MTEB Banking77Classification + config: default + split: test + revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 + metrics: + - type: accuracy + value: 84.76298701298703 + - type: f1 + value: 84.24881789367576 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-p2p + name: MTEB BiorxivClusteringP2P + config: default + split: test + revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 + metrics: + - type: v_measure + value: 46.86757924102047 + - task: + type: Clustering + dataset: + type: mteb/biorxiv-clustering-s2s + name: MTEB BiorxivClusteringS2S + config: default + split: test + revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 + metrics: + - type: v_measure + value: 43.86043680479362 + - task: + type: Clustering + dataset: + type: C-MTEB/CLSClusteringP2P + name: MTEB CLSClusteringP2P + config: default + split: test + revision: 4b6227591c6c1a73bc76b1055f3b7f3588e72476 + metrics: + - type: v_measure + value: 45.684222588040605 + - task: + type: Clustering + dataset: + type: C-MTEB/CLSClusteringS2S + name: MTEB CLSClusteringS2S + config: default + split: test + revision: e458b3f5414b62b7f9f83499ac1f5497ae2e869f + metrics: + - type: v_measure + value: 45.45639765303432 + - task: + type: Reranking + dataset: + type: C-MTEB/CMedQAv1-reranking + name: MTEB CMedQAv1 + config: default + split: test + revision: 8d7f1e942507dac42dc58017c1a001c3717da7df + metrics: + - type: map + value: 88.7058672660788 + - type: mrr + value: 90.5795634920635 + - task: + type: Reranking + dataset: + type: C-MTEB/CMedQAv2-reranking + name: MTEB CMedQAv2 + config: default + split: test + revision: 23d186750531a14a0357ca22cd92d712fd512ea0 + metrics: + - type: map + value: 90.50750030424048 + - type: mrr + value: 92.3970634920635 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackAndroidRetrieval + config: default + split: test + revision: f46a197baaae43b4f621051089b82a364682dfeb + metrics: + - type: map_at_1 + value: 28.848000000000003 + - type: map_at_10 + value: 40.453 + - type: map_at_100 + value: 42.065000000000005 + - type: map_at_1000 + value: 42.176 + - type: map_at_3 + value: 36.697 + - type: map_at_5 + value: 38.855000000000004 + - type: mrr_at_1 + value: 34.764 + - type: mrr_at_10 + value: 45.662000000000006 + - type: mrr_at_100 + value: 46.56 + - type: mrr_at_1000 + value: 46.597 + - type: mrr_at_3 + value: 42.632 + - type: mrr_at_5 + value: 44.249 + - type: ndcg_at_1 + value: 34.764 + - type: ndcg_at_10 + value: 47.033 + - type: ndcg_at_100 + value: 53.089 + - type: ndcg_at_1000 + value: 54.818 + - type: ndcg_at_3 + value: 41.142 + - type: ndcg_at_5 + value: 43.928 + - type: precision_at_1 + value: 34.764 + - type: precision_at_10 + value: 9.027000000000001 + - type: precision_at_100 + value: 1.465 + - type: precision_at_1000 + value: 0.192 + - type: precision_at_3 + value: 19.695 + - type: precision_at_5 + value: 14.535 + - type: recall_at_1 + value: 28.848000000000003 + - type: recall_at_10 + value: 60.849 + - type: recall_at_100 + value: 85.764 + - type: recall_at_1000 + value: 96.098 + - type: recall_at_3 + value: 44.579 + - type: recall_at_5 + value: 51.678999999999995 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackEnglishRetrieval + config: default + split: test + revision: ad9991cb51e31e31e430383c75ffb2885547b5f0 + metrics: + - type: map_at_1 + value: 30.731 + - type: map_at_10 + value: 41.859 + - type: map_at_100 + value: 43.13 + - type: map_at_1000 + value: 43.257 + - type: map_at_3 + value: 38.384 + - type: map_at_5 + value: 40.284 + - type: mrr_at_1 + value: 38.471 + - type: mrr_at_10 + value: 47.531 + - type: mrr_at_100 + value: 48.199 + - type: mrr_at_1000 + value: 48.24 + - type: mrr_at_3 + value: 44.989000000000004 + - type: mrr_at_5 + value: 46.403 + - type: ndcg_at_1 + value: 38.471 + - type: ndcg_at_10 + value: 48.022999999999996 + - type: ndcg_at_100 + value: 52.32599999999999 + - type: ndcg_at_1000 + value: 54.26 + - type: ndcg_at_3 + value: 42.986999999999995 + - type: ndcg_at_5 + value: 45.23 + - type: precision_at_1 + value: 38.471 + - type: precision_at_10 + value: 9.248000000000001 + - type: precision_at_100 + value: 1.469 + - type: precision_at_1000 + value: 0.193 + - type: precision_at_3 + value: 20.892 + - type: precision_at_5 + value: 14.892 + - type: recall_at_1 + value: 30.731 + - type: recall_at_10 + value: 59.561 + - type: recall_at_100 + value: 77.637 + - type: recall_at_1000 + value: 89.64999999999999 + - type: recall_at_3 + value: 44.897999999999996 + - type: recall_at_5 + value: 51.181 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGamingRetrieval + config: default + split: test + revision: 4885aa143210c98657558c04aaf3dc47cfb54340 + metrics: + - type: map_at_1 + value: 34.949000000000005 + - type: map_at_10 + value: 48.117 + - type: map_at_100 + value: 49.355 + - type: map_at_1000 + value: 49.409 + - type: map_at_3 + value: 44.732 + - type: map_at_5 + value: 46.555 + - type: mrr_at_1 + value: 40.188 + - type: mrr_at_10 + value: 51.452 + - type: mrr_at_100 + value: 52.219 + - type: mrr_at_1000 + value: 52.24100000000001 + - type: mrr_at_3 + value: 48.642 + - type: mrr_at_5 + value: 50.134 + - type: ndcg_at_1 + value: 40.188 + - type: ndcg_at_10 + value: 54.664 + - type: ndcg_at_100 + value: 59.38099999999999 + - type: ndcg_at_1000 + value: 60.363 + - type: ndcg_at_3 + value: 48.684 + - type: ndcg_at_5 + value: 51.406 + - type: precision_at_1 + value: 40.188 + - type: precision_at_10 + value: 9.116 + - type: precision_at_100 + value: 1.248 + - type: precision_at_1000 + value: 0.13699999999999998 + - type: precision_at_3 + value: 22.236 + - type: precision_at_5 + value: 15.310000000000002 + - type: recall_at_1 + value: 34.949000000000005 + - type: recall_at_10 + value: 70.767 + - type: recall_at_100 + value: 90.79 + - type: recall_at_1000 + value: 97.57900000000001 + - type: recall_at_3 + value: 54.723 + - type: recall_at_5 + value: 61.404 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackGisRetrieval + config: default + split: test + revision: 5003b3064772da1887988e05400cf3806fe491f2 + metrics: + - type: map_at_1 + value: 25.312 + - type: map_at_10 + value: 34.799 + - type: map_at_100 + value: 35.906 + - type: map_at_1000 + value: 35.983 + - type: map_at_3 + value: 31.582 + - type: map_at_5 + value: 33.507999999999996 + - type: mrr_at_1 + value: 27.232 + - type: mrr_at_10 + value: 36.82 + - type: mrr_at_100 + value: 37.733 + - type: mrr_at_1000 + value: 37.791000000000004 + - type: mrr_at_3 + value: 33.804 + - type: mrr_at_5 + value: 35.606 + - type: ndcg_at_1 + value: 27.232 + - type: ndcg_at_10 + value: 40.524 + - type: ndcg_at_100 + value: 45.654 + - type: ndcg_at_1000 + value: 47.557 + - type: ndcg_at_3 + value: 34.312 + - type: ndcg_at_5 + value: 37.553 + - type: precision_at_1 + value: 27.232 + - type: precision_at_10 + value: 6.52 + - type: precision_at_100 + value: 0.9530000000000001 + - type: precision_at_1000 + value: 0.11399999999999999 + - type: precision_at_3 + value: 14.915000000000001 + - type: precision_at_5 + value: 10.847 + - type: recall_at_1 + value: 25.312 + - type: recall_at_10 + value: 56.169000000000004 + - type: recall_at_100 + value: 79.16499999999999 + - type: recall_at_1000 + value: 93.49300000000001 + - type: recall_at_3 + value: 39.5 + - type: recall_at_5 + value: 47.288999999999994 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackMathematicaRetrieval + config: default + split: test + revision: 90fceea13679c63fe563ded68f3b6f06e50061de + metrics: + - type: map_at_1 + value: 17.153 + - type: map_at_10 + value: 27.671 + - type: map_at_100 + value: 29.186 + - type: map_at_1000 + value: 29.299999999999997 + - type: map_at_3 + value: 24.490000000000002 + - type: map_at_5 + value: 26.178 + - type: mrr_at_1 + value: 21.144 + - type: mrr_at_10 + value: 32.177 + - type: mrr_at_100 + value: 33.247 + - type: mrr_at_1000 + value: 33.306000000000004 + - type: mrr_at_3 + value: 29.187 + - type: mrr_at_5 + value: 30.817 + - type: ndcg_at_1 + value: 21.144 + - type: ndcg_at_10 + value: 33.981 + - type: ndcg_at_100 + value: 40.549 + - type: ndcg_at_1000 + value: 43.03 + - type: ndcg_at_3 + value: 28.132 + - type: ndcg_at_5 + value: 30.721999999999998 + - type: precision_at_1 + value: 21.144 + - type: precision_at_10 + value: 6.666999999999999 + - type: precision_at_100 + value: 1.147 + - type: precision_at_1000 + value: 0.149 + - type: precision_at_3 + value: 14.302999999999999 + - type: precision_at_5 + value: 10.423 + - type: recall_at_1 + value: 17.153 + - type: recall_at_10 + value: 48.591 + - type: recall_at_100 + value: 76.413 + - type: recall_at_1000 + value: 93.8 + - type: recall_at_3 + value: 32.329 + - type: recall_at_5 + value: 38.958999999999996 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackPhysicsRetrieval + config: default + split: test + revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4 + metrics: + - type: map_at_1 + value: 27.909 + - type: map_at_10 + value: 40.168 + - type: map_at_100 + value: 41.524 + - type: map_at_1000 + value: 41.626000000000005 + - type: map_at_3 + value: 36.274 + - type: map_at_5 + value: 38.411 + - type: mrr_at_1 + value: 34.649 + - type: mrr_at_10 + value: 45.613 + - type: mrr_at_100 + value: 46.408 + - type: mrr_at_1000 + value: 46.444 + - type: mrr_at_3 + value: 42.620999999999995 + - type: mrr_at_5 + value: 44.277 + - type: ndcg_at_1 + value: 34.649 + - type: ndcg_at_10 + value: 47.071000000000005 + - type: ndcg_at_100 + value: 52.559999999999995 + - type: ndcg_at_1000 + value: 54.285000000000004 + - type: ndcg_at_3 + value: 40.63 + - type: ndcg_at_5 + value: 43.584 + - type: precision_at_1 + value: 34.649 + - type: precision_at_10 + value: 8.855 + - type: precision_at_100 + value: 1.361 + - type: precision_at_1000 + value: 0.167 + - type: precision_at_3 + value: 19.538 + - type: precision_at_5 + value: 14.187 + - type: recall_at_1 + value: 27.909 + - type: recall_at_10 + value: 62.275000000000006 + - type: recall_at_100 + value: 84.95 + - type: recall_at_1000 + value: 96.02000000000001 + - type: recall_at_3 + value: 44.767 + - type: recall_at_5 + value: 52.03 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackProgrammersRetrieval + config: default + split: test + revision: 6184bc1440d2dbc7612be22b50686b8826d22b32 + metrics: + - type: map_at_1 + value: 25.846000000000004 + - type: map_at_10 + value: 36.870999999999995 + - type: map_at_100 + value: 38.294 + - type: map_at_1000 + value: 38.401 + - type: map_at_3 + value: 33.163 + - type: map_at_5 + value: 35.177 + - type: mrr_at_1 + value: 31.849 + - type: mrr_at_10 + value: 41.681000000000004 + - type: mrr_at_100 + value: 42.658 + - type: mrr_at_1000 + value: 42.71 + - type: mrr_at_3 + value: 39.003 + - type: mrr_at_5 + value: 40.436 + - type: ndcg_at_1 + value: 31.849 + - type: ndcg_at_10 + value: 43.291000000000004 + - type: ndcg_at_100 + value: 49.136 + - type: ndcg_at_1000 + value: 51.168 + - type: ndcg_at_3 + value: 37.297999999999995 + - type: ndcg_at_5 + value: 39.934 + - type: precision_at_1 + value: 31.849 + - type: precision_at_10 + value: 8.219 + - type: precision_at_100 + value: 1.318 + - type: precision_at_1000 + value: 0.167 + - type: precision_at_3 + value: 18.151 + - type: precision_at_5 + value: 13.242 + - type: recall_at_1 + value: 25.846000000000004 + - type: recall_at_10 + value: 57.642 + - type: recall_at_100 + value: 82.069 + - type: recall_at_1000 + value: 95.684 + - type: recall_at_3 + value: 40.778999999999996 + - type: recall_at_5 + value: 47.647 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackStatsRetrieval + config: default + split: test + revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a + metrics: + - type: map_at_1 + value: 25.102000000000004 + - type: map_at_10 + value: 33.31 + - type: map_at_100 + value: 34.443 + - type: map_at_1000 + value: 34.547 + - type: map_at_3 + value: 30.932 + - type: map_at_5 + value: 32.126 + - type: mrr_at_1 + value: 28.221 + - type: mrr_at_10 + value: 36.519 + - type: mrr_at_100 + value: 37.425000000000004 + - type: mrr_at_1000 + value: 37.498 + - type: mrr_at_3 + value: 34.254 + - type: mrr_at_5 + value: 35.388999999999996 + - type: ndcg_at_1 + value: 28.221 + - type: ndcg_at_10 + value: 38.340999999999994 + - type: ndcg_at_100 + value: 43.572 + - type: ndcg_at_1000 + value: 45.979 + - type: ndcg_at_3 + value: 33.793 + - type: ndcg_at_5 + value: 35.681000000000004 + - type: precision_at_1 + value: 28.221 + - type: precision_at_10 + value: 6.135 + - type: precision_at_100 + value: 0.946 + - type: precision_at_1000 + value: 0.123 + - type: precision_at_3 + value: 14.519000000000002 + - type: precision_at_5 + value: 9.969 + - type: recall_at_1 + value: 25.102000000000004 + - type: recall_at_10 + value: 50.639 + - type: recall_at_100 + value: 74.075 + - type: recall_at_1000 + value: 91.393 + - type: recall_at_3 + value: 37.952000000000005 + - type: recall_at_5 + value: 42.71 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackTexRetrieval + config: default + split: test + revision: 46989137a86843e03a6195de44b09deda022eec7 + metrics: + - type: map_at_1 + value: 18.618000000000002 + - type: map_at_10 + value: 26.714 + - type: map_at_100 + value: 27.929 + - type: map_at_1000 + value: 28.057 + - type: map_at_3 + value: 24.134 + - type: map_at_5 + value: 25.575 + - type: mrr_at_1 + value: 22.573999999999998 + - type: mrr_at_10 + value: 30.786 + - type: mrr_at_100 + value: 31.746000000000002 + - type: mrr_at_1000 + value: 31.822 + - type: mrr_at_3 + value: 28.412 + - type: mrr_at_5 + value: 29.818 + - type: ndcg_at_1 + value: 22.573999999999998 + - type: ndcg_at_10 + value: 31.852000000000004 + - type: ndcg_at_100 + value: 37.477 + - type: ndcg_at_1000 + value: 40.331 + - type: ndcg_at_3 + value: 27.314 + - type: ndcg_at_5 + value: 29.485 + - type: precision_at_1 + value: 22.573999999999998 + - type: precision_at_10 + value: 5.86 + - type: precision_at_100 + value: 1.012 + - type: precision_at_1000 + value: 0.146 + - type: precision_at_3 + value: 13.099 + - type: precision_at_5 + value: 9.56 + - type: recall_at_1 + value: 18.618000000000002 + - type: recall_at_10 + value: 43.134 + - type: recall_at_100 + value: 68.294 + - type: recall_at_1000 + value: 88.283 + - type: recall_at_3 + value: 30.397999999999996 + - type: recall_at_5 + value: 35.998000000000005 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackUnixRetrieval + config: default + split: test + revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53 + metrics: + - type: map_at_1 + value: 27.76 + - type: map_at_10 + value: 37.569 + - type: map_at_100 + value: 38.784 + - type: map_at_1000 + value: 38.884 + - type: map_at_3 + value: 34.379 + - type: map_at_5 + value: 36.092999999999996 + - type: mrr_at_1 + value: 32.556000000000004 + - type: mrr_at_10 + value: 41.870000000000005 + - type: mrr_at_100 + value: 42.759 + - type: mrr_at_1000 + value: 42.806 + - type: mrr_at_3 + value: 39.086 + - type: mrr_at_5 + value: 40.574 + - type: ndcg_at_1 + value: 32.556000000000004 + - type: ndcg_at_10 + value: 43.382 + - type: ndcg_at_100 + value: 48.943 + - type: ndcg_at_1000 + value: 50.961999999999996 + - type: ndcg_at_3 + value: 37.758 + - type: ndcg_at_5 + value: 40.282000000000004 + - type: precision_at_1 + value: 32.556000000000004 + - type: precision_at_10 + value: 7.463 + - type: precision_at_100 + value: 1.1480000000000001 + - type: precision_at_1000 + value: 0.14300000000000002 + - type: precision_at_3 + value: 17.133000000000003 + - type: precision_at_5 + value: 12.164 + - type: recall_at_1 + value: 27.76 + - type: recall_at_10 + value: 56.71000000000001 + - type: recall_at_100 + value: 81.053 + - type: recall_at_1000 + value: 94.75 + - type: recall_at_3 + value: 41.387 + - type: recall_at_5 + value: 47.818 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWebmastersRetrieval + config: default + split: test + revision: 160c094312a0e1facb97e55eeddb698c0abe3571 + metrics: + - type: map_at_1 + value: 23.62 + - type: map_at_10 + value: 33.522999999999996 + - type: map_at_100 + value: 35.281 + - type: map_at_1000 + value: 35.504000000000005 + - type: map_at_3 + value: 30.314999999999998 + - type: map_at_5 + value: 32.065 + - type: mrr_at_1 + value: 28.458 + - type: mrr_at_10 + value: 38.371 + - type: mrr_at_100 + value: 39.548 + - type: mrr_at_1000 + value: 39.601 + - type: mrr_at_3 + value: 35.638999999999996 + - type: mrr_at_5 + value: 37.319 + - type: ndcg_at_1 + value: 28.458 + - type: ndcg_at_10 + value: 39.715 + - type: ndcg_at_100 + value: 46.394999999999996 + - type: ndcg_at_1000 + value: 48.943999999999996 + - type: ndcg_at_3 + value: 34.361999999999995 + - type: ndcg_at_5 + value: 37.006 + - type: precision_at_1 + value: 28.458 + - type: precision_at_10 + value: 7.5889999999999995 + - type: precision_at_100 + value: 1.514 + - type: precision_at_1000 + value: 0.242 + - type: precision_at_3 + value: 16.073999999999998 + - type: precision_at_5 + value: 11.976 + - type: recall_at_1 + value: 23.62 + - type: recall_at_10 + value: 52.117000000000004 + - type: recall_at_100 + value: 81.097 + - type: recall_at_1000 + value: 96.47 + - type: recall_at_3 + value: 37.537 + - type: recall_at_5 + value: 44.112 + - task: + type: Retrieval + dataset: + type: BeIR/cqadupstack + name: MTEB CQADupstackWordpressRetrieval + config: default + split: test + revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4 + metrics: + - type: map_at_1 + value: 18.336 + - type: map_at_10 + value: 26.811 + - type: map_at_100 + value: 27.892 + - type: map_at_1000 + value: 27.986 + - type: map_at_3 + value: 23.976 + - type: map_at_5 + value: 25.605 + - type: mrr_at_1 + value: 20.148 + - type: mrr_at_10 + value: 28.898000000000003 + - type: mrr_at_100 + value: 29.866 + - type: mrr_at_1000 + value: 29.929 + - type: mrr_at_3 + value: 26.247999999999998 + - type: mrr_at_5 + value: 27.744999999999997 + - type: ndcg_at_1 + value: 20.148 + - type: ndcg_at_10 + value: 32.059 + - type: ndcg_at_100 + value: 37.495 + - type: ndcg_at_1000 + value: 39.855000000000004 + - type: ndcg_at_3 + value: 26.423000000000002 + - type: ndcg_at_5 + value: 29.212 + - type: precision_at_1 + value: 20.148 + - type: precision_at_10 + value: 5.268 + - type: precision_at_100 + value: 0.872 + - type: precision_at_1000 + value: 0.11900000000000001 + - type: precision_at_3 + value: 11.459999999999999 + - type: precision_at_5 + value: 8.503 + - type: recall_at_1 + value: 18.336 + - type: recall_at_10 + value: 46.411 + - type: recall_at_100 + value: 71.33500000000001 + - type: recall_at_1000 + value: 88.895 + - type: recall_at_3 + value: 31.134 + - type: recall_at_5 + value: 37.862 + - task: + type: Retrieval + dataset: + type: mteb/climate-fever + name: MTEB ClimateFEVER + config: default + split: test + revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380 + metrics: + - type: map_at_1 + value: 21.149 + - type: map_at_10 + value: 35.251 + - type: map_at_100 + value: 37.342 + - type: map_at_1000 + value: 37.516 + - type: map_at_3 + value: 30.543 + - type: map_at_5 + value: 33.19 + - type: mrr_at_1 + value: 47.687000000000005 + - type: mrr_at_10 + value: 59.391000000000005 + - type: mrr_at_100 + value: 59.946999999999996 + - type: mrr_at_1000 + value: 59.965999999999994 + - type: mrr_at_3 + value: 56.938 + - type: mrr_at_5 + value: 58.498000000000005 + - type: ndcg_at_1 + value: 47.687000000000005 + - type: ndcg_at_10 + value: 45.381 + - type: ndcg_at_100 + value: 52.405 + - type: ndcg_at_1000 + value: 55.041 + - type: ndcg_at_3 + value: 40.024 + - type: ndcg_at_5 + value: 41.821999999999996 + - type: precision_at_1 + value: 47.687000000000005 + - type: precision_at_10 + value: 13.355 + - type: precision_at_100 + value: 2.113 + - type: precision_at_1000 + value: 0.261 + - type: precision_at_3 + value: 29.793999999999997 + - type: precision_at_5 + value: 21.811 + - type: recall_at_1 + value: 21.149 + - type: recall_at_10 + value: 49.937 + - type: recall_at_100 + value: 73.382 + - type: recall_at_1000 + value: 87.606 + - type: recall_at_3 + value: 35.704 + - type: recall_at_5 + value: 42.309000000000005 + - task: + type: Retrieval + dataset: + type: C-MTEB/CmedqaRetrieval + name: MTEB CmedqaRetrieval + config: default + split: dev + revision: cd540c506dae1cf9e9a59c3e06f42030d54e7301 + metrics: + - type: map_at_1 + value: 28.74 + - type: map_at_10 + value: 41.981 + - type: map_at_100 + value: 43.753 + - type: map_at_1000 + value: 43.858999999999995 + - type: map_at_3 + value: 37.634 + - type: map_at_5 + value: 40.158 + - type: mrr_at_1 + value: 43.086 + - type: mrr_at_10 + value: 51.249 + - type: mrr_at_100 + value: 52.154 + - type: mrr_at_1000 + value: 52.190999999999995 + - type: mrr_at_3 + value: 48.787000000000006 + - type: mrr_at_5 + value: 50.193 + - type: ndcg_at_1 + value: 43.086 + - type: ndcg_at_10 + value: 48.703 + - type: ndcg_at_100 + value: 55.531 + - type: ndcg_at_1000 + value: 57.267999999999994 + - type: ndcg_at_3 + value: 43.464000000000006 + - type: ndcg_at_5 + value: 45.719 + - type: precision_at_1 + value: 43.086 + - type: precision_at_10 + value: 10.568 + - type: precision_at_100 + value: 1.616 + - type: precision_at_1000 + value: 0.184 + - type: precision_at_3 + value: 24.256 + - type: precision_at_5 + value: 17.509 + - type: recall_at_1 + value: 28.74 + - type: recall_at_10 + value: 59.349 + - type: recall_at_100 + value: 87.466 + - type: recall_at_1000 + value: 98.914 + - type: recall_at_3 + value: 43.322 + - type: recall_at_5 + value: 50.409000000000006 + - task: + type: PairClassification + dataset: + type: C-MTEB/CMNLI + name: MTEB Cmnli + config: default + split: validation + revision: 41bc36f332156f7adc9e38f53777c959b2ae9766 + metrics: + - type: cos_sim_accuracy + value: 79.03788334335539 + - type: cos_sim_ap + value: 87.21703260472833 + - type: cos_sim_f1 + value: 79.87784187309127 + - type: cos_sim_precision + value: 77.36634531113059 + - type: cos_sim_recall + value: 82.55786766425064 + - type: dot_accuracy + value: 79.03788334335539 + - type: dot_ap + value: 87.22906528217948 + - type: dot_f1 + value: 79.87784187309127 + - type: dot_precision + value: 77.36634531113059 + - type: dot_recall + value: 82.55786766425064 + - type: euclidean_accuracy + value: 79.03788334335539 + - type: euclidean_ap + value: 87.21703670465753 + - type: euclidean_f1 + value: 79.87784187309127 + - type: euclidean_precision + value: 77.36634531113059 + - type: euclidean_recall + value: 82.55786766425064 + - type: manhattan_accuracy + value: 78.28021647624774 + - type: manhattan_ap + value: 86.66244127855394 + - type: manhattan_f1 + value: 79.24485643228577 + - type: manhattan_precision + value: 76.71262858393521 + - type: manhattan_recall + value: 81.94996492868833 + - type: max_accuracy + value: 79.03788334335539 + - type: max_ap + value: 87.22906528217948 + - type: max_f1 + value: 79.87784187309127 + - task: + type: Retrieval + dataset: + type: C-MTEB/CovidRetrieval + name: MTEB CovidRetrieval + config: default + split: dev + revision: 1271c7809071a13532e05f25fb53511ffce77117 + metrics: + - type: map_at_1 + value: 67.597 + - type: map_at_10 + value: 75.81599999999999 + - type: map_at_100 + value: 76.226 + - type: map_at_1000 + value: 76.23100000000001 + - type: map_at_3 + value: 73.907 + - type: map_at_5 + value: 75.08200000000001 + - type: mrr_at_1 + value: 67.756 + - type: mrr_at_10 + value: 75.8 + - type: mrr_at_100 + value: 76.205 + - type: mrr_at_1000 + value: 76.21 + - type: mrr_at_3 + value: 73.955 + - type: mrr_at_5 + value: 75.093 + - type: ndcg_at_1 + value: 67.756 + - type: ndcg_at_10 + value: 79.598 + - type: ndcg_at_100 + value: 81.34400000000001 + - type: ndcg_at_1000 + value: 81.477 + - type: ndcg_at_3 + value: 75.876 + - type: ndcg_at_5 + value: 77.94200000000001 + - type: precision_at_1 + value: 67.756 + - type: precision_at_10 + value: 9.231 + - type: precision_at_100 + value: 1.0 + - type: precision_at_1000 + value: 0.101 + - type: precision_at_3 + value: 27.362 + - type: precision_at_5 + value: 17.45 + - type: recall_at_1 + value: 67.597 + - type: recall_at_10 + value: 91.307 + - type: recall_at_100 + value: 98.946 + - type: recall_at_1000 + value: 100.0 + - type: recall_at_3 + value: 81.428 + - type: recall_at_5 + value: 86.407 + - task: + type: Retrieval + dataset: + type: mteb/dbpedia + name: MTEB DBPedia + config: default + split: test + revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659 + metrics: + - type: map_at_1 + value: 9.33 + - type: map_at_10 + value: 23.118 + - type: map_at_100 + value: 34.28 + - type: map_at_1000 + value: 36.574 + - type: map_at_3 + value: 15.576 + - type: map_at_5 + value: 18.778 + - type: mrr_at_1 + value: 75.25 + - type: mrr_at_10 + value: 81.958 + - type: mrr_at_100 + value: 82.282 + - type: mrr_at_1000 + value: 82.285 + - type: mrr_at_3 + value: 81.042 + - type: mrr_at_5 + value: 81.62899999999999 + - type: ndcg_at_1 + value: 63.625 + - type: ndcg_at_10 + value: 50.781 + - type: ndcg_at_100 + value: 55.537000000000006 + - type: ndcg_at_1000 + value: 62.651 + - type: ndcg_at_3 + value: 55.297 + - type: ndcg_at_5 + value: 53.103 + - type: precision_at_1 + value: 75.25 + - type: precision_at_10 + value: 41.475 + - type: precision_at_100 + value: 13.5 + - type: precision_at_1000 + value: 2.686 + - type: precision_at_3 + value: 59.333000000000006 + - type: precision_at_5 + value: 51.9 + - type: recall_at_1 + value: 9.33 + - type: recall_at_10 + value: 29.398000000000003 + - type: recall_at_100 + value: 61.951 + - type: recall_at_1000 + value: 85.463 + - type: recall_at_3 + value: 17.267 + - type: recall_at_5 + value: 21.89 + - task: + type: Retrieval + dataset: + type: C-MTEB/DuRetrieval + name: MTEB DuRetrieval + config: default + split: dev + revision: a1a333e290fe30b10f3f56498e3a0d911a693ced + metrics: + - type: map_at_1 + value: 25.608999999999998 + - type: map_at_10 + value: 78.649 + - type: map_at_100 + value: 81.67699999999999 + - type: map_at_1000 + value: 81.71000000000001 + - type: map_at_3 + value: 54.112 + - type: map_at_5 + value: 68.34700000000001 + - type: mrr_at_1 + value: 87.75 + - type: mrr_at_10 + value: 92.175 + - type: mrr_at_100 + value: 92.225 + - type: mrr_at_1000 + value: 92.227 + - type: mrr_at_3 + value: 91.833 + - type: mrr_at_5 + value: 92.06800000000001 + - type: ndcg_at_1 + value: 87.75 + - type: ndcg_at_10 + value: 86.56700000000001 + - type: ndcg_at_100 + value: 89.519 + - type: ndcg_at_1000 + value: 89.822 + - type: ndcg_at_3 + value: 84.414 + - type: ndcg_at_5 + value: 83.721 + - type: precision_at_1 + value: 87.75 + - type: precision_at_10 + value: 41.665 + - type: precision_at_100 + value: 4.827 + - type: precision_at_1000 + value: 0.49 + - type: precision_at_3 + value: 75.533 + - type: precision_at_5 + value: 64.01 + - type: recall_at_1 + value: 25.608999999999998 + - type: recall_at_10 + value: 88.708 + - type: recall_at_100 + value: 98.007 + - type: recall_at_1000 + value: 99.555 + - type: recall_at_3 + value: 57.157000000000004 + - type: recall_at_5 + value: 74.118 + - task: + type: Retrieval + dataset: + type: C-MTEB/EcomRetrieval + name: MTEB EcomRetrieval + config: default + split: dev + revision: 687de13dc7294d6fd9be10c6945f9e8fec8166b9 + metrics: + - type: map_at_1 + value: 55.800000000000004 + - type: map_at_10 + value: 65.952 + - type: map_at_100 + value: 66.413 + - type: map_at_1000 + value: 66.426 + - type: map_at_3 + value: 63.3 + - type: map_at_5 + value: 64.945 + - type: mrr_at_1 + value: 55.800000000000004 + - type: mrr_at_10 + value: 65.952 + - type: mrr_at_100 + value: 66.413 + - type: mrr_at_1000 + value: 66.426 + - type: mrr_at_3 + value: 63.3 + - type: mrr_at_5 + value: 64.945 + - type: ndcg_at_1 + value: 55.800000000000004 + - type: ndcg_at_10 + value: 71.00800000000001 + - type: ndcg_at_100 + value: 72.974 + - type: ndcg_at_1000 + value: 73.302 + - type: ndcg_at_3 + value: 65.669 + - type: ndcg_at_5 + value: 68.634 + - type: precision_at_1 + value: 55.800000000000004 + - type: precision_at_10 + value: 8.690000000000001 + - type: precision_at_100 + value: 0.955 + - type: precision_at_1000 + value: 0.098 + - type: precision_at_3 + value: 24.166999999999998 + - type: precision_at_5 + value: 15.939999999999998 + - type: recall_at_1 + value: 55.800000000000004 + - type: recall_at_10 + value: 86.9 + - type: recall_at_100 + value: 95.5 + - type: recall_at_1000 + value: 98.0 + - type: recall_at_3 + value: 72.5 + - type: recall_at_5 + value: 79.7 + - task: + type: Classification + dataset: + type: mteb/emotion + name: MTEB EmotionClassification + config: default + split: test + revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 + metrics: + - type: accuracy + value: 67.39500000000001 + - type: f1 + value: 62.01837785021389 + - task: + type: Retrieval + dataset: + type: mteb/fever + name: MTEB FEVER + config: default + split: test + revision: bea83ef9e8fb933d90a2f1d5515737465d613e12 + metrics: + - type: map_at_1 + value: 86.27 + - type: map_at_10 + value: 92.163 + - type: map_at_100 + value: 92.351 + - type: map_at_1000 + value: 92.36 + - type: map_at_3 + value: 91.36 + - type: map_at_5 + value: 91.888 + - type: mrr_at_1 + value: 92.72399999999999 + - type: mrr_at_10 + value: 95.789 + - type: mrr_at_100 + value: 95.80300000000001 + - type: mrr_at_1000 + value: 95.804 + - type: mrr_at_3 + value: 95.64200000000001 + - type: mrr_at_5 + value: 95.75 + - type: ndcg_at_1 + value: 92.72399999999999 + - type: ndcg_at_10 + value: 94.269 + - type: ndcg_at_100 + value: 94.794 + - type: ndcg_at_1000 + value: 94.94 + - type: ndcg_at_3 + value: 93.427 + - type: ndcg_at_5 + value: 93.914 + - type: precision_at_1 + value: 92.72399999999999 + - type: precision_at_10 + value: 11.007 + - type: precision_at_100 + value: 1.153 + - type: precision_at_1000 + value: 0.11800000000000001 + - type: precision_at_3 + value: 34.993 + - type: precision_at_5 + value: 21.542 + - type: recall_at_1 + value: 86.27 + - type: recall_at_10 + value: 97.031 + - type: recall_at_100 + value: 98.839 + - type: recall_at_1000 + value: 99.682 + - type: recall_at_3 + value: 94.741 + - type: recall_at_5 + value: 96.03 + - task: + type: Retrieval + dataset: + type: mteb/fiqa + name: MTEB FiQA2018 + config: default + split: test + revision: 27a168819829fe9bcd655c2df245fb19452e8e06 + metrics: + - type: map_at_1 + value: 29.561999999999998 + - type: map_at_10 + value: 48.52 + - type: map_at_100 + value: 50.753 + - type: map_at_1000 + value: 50.878 + - type: map_at_3 + value: 42.406 + - type: map_at_5 + value: 45.994 + - type: mrr_at_1 + value: 54.784 + - type: mrr_at_10 + value: 64.51400000000001 + - type: mrr_at_100 + value: 65.031 + - type: mrr_at_1000 + value: 65.05199999999999 + - type: mrr_at_3 + value: 62.474 + - type: mrr_at_5 + value: 63.562 + - type: ndcg_at_1 + value: 54.784 + - type: ndcg_at_10 + value: 57.138 + - type: ndcg_at_100 + value: 63.666999999999994 + - type: ndcg_at_1000 + value: 65.379 + - type: ndcg_at_3 + value: 52.589 + - type: ndcg_at_5 + value: 54.32599999999999 + - type: precision_at_1 + value: 54.784 + - type: precision_at_10 + value: 15.693999999999999 + - type: precision_at_100 + value: 2.259 + - type: precision_at_1000 + value: 0.256 + - type: precision_at_3 + value: 34.774 + - type: precision_at_5 + value: 25.772000000000002 + - type: recall_at_1 + value: 29.561999999999998 + - type: recall_at_10 + value: 64.708 + - type: recall_at_100 + value: 87.958 + - type: recall_at_1000 + value: 97.882 + - type: recall_at_3 + value: 48.394 + - type: recall_at_5 + value: 56.101 + - task: + type: Retrieval + dataset: + type: mteb/hotpotqa + name: MTEB HotpotQA + config: default + split: test + revision: ab518f4d6fcca38d87c25209f94beba119d02014 + metrics: + - type: map_at_1 + value: 43.72 + - type: map_at_10 + value: 71.905 + - type: map_at_100 + value: 72.685 + - type: map_at_1000 + value: 72.72800000000001 + - type: map_at_3 + value: 68.538 + - type: map_at_5 + value: 70.675 + - type: mrr_at_1 + value: 87.441 + - type: mrr_at_10 + value: 91.432 + - type: mrr_at_100 + value: 91.512 + - type: mrr_at_1000 + value: 91.513 + - type: mrr_at_3 + value: 90.923 + - type: mrr_at_5 + value: 91.252 + - type: ndcg_at_1 + value: 87.441 + - type: ndcg_at_10 + value: 79.212 + - type: ndcg_at_100 + value: 81.694 + - type: ndcg_at_1000 + value: 82.447 + - type: ndcg_at_3 + value: 74.746 + - type: ndcg_at_5 + value: 77.27199999999999 + - type: precision_at_1 + value: 87.441 + - type: precision_at_10 + value: 16.42 + - type: precision_at_100 + value: 1.833 + - type: precision_at_1000 + value: 0.193 + - type: precision_at_3 + value: 48.184 + - type: precision_at_5 + value: 30.897999999999996 + - type: recall_at_1 + value: 43.72 + - type: recall_at_10 + value: 82.1 + - type: recall_at_100 + value: 91.62700000000001 + - type: recall_at_1000 + value: 96.556 + - type: recall_at_3 + value: 72.275 + - type: recall_at_5 + value: 77.24499999999999 + - task: + type: Classification + dataset: + type: C-MTEB/IFlyTek-classification + name: MTEB IFlyTek + config: default + split: validation + revision: 421605374b29664c5fc098418fe20ada9bd55f8a + metrics: + - type: accuracy + value: 54.520969603693736 + - type: f1 + value: 42.359043311419626 + - task: + type: Classification + dataset: + type: mteb/imdb + name: MTEB ImdbClassification + config: default + split: test + revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 + metrics: + - type: accuracy + value: 96.72559999999999 + - type: ap + value: 95.01759461773742 + - type: f1 + value: 96.72429945397575 + - task: + type: Classification + dataset: + type: C-MTEB/JDReview-classification + name: MTEB JDReview + config: default + split: test + revision: b7c64bd89eb87f8ded463478346f76731f07bf8b + metrics: + - type: accuracy + value: 90.1688555347092 + - type: ap + value: 63.36583667477521 + - type: f1 + value: 85.6845016521436 + - task: + type: STS + dataset: + type: C-MTEB/LCQMC + name: MTEB LCQMC + config: default + split: test + revision: 17f9b096f80380fce5ed12a9be8be7784b337daf + metrics: + - type: cos_sim_pearson + value: 68.8503997749679 + - type: cos_sim_spearman + value: 74.15059291199371 + - type: euclidean_pearson + value: 73.01105331948172 + - type: euclidean_spearman + value: 74.15059069348803 + - type: manhattan_pearson + value: 72.80856655624557 + - type: manhattan_spearman + value: 73.95174793448955 + - task: + type: Reranking + dataset: + type: C-MTEB/Mmarco-reranking + name: MTEB MMarcoReranking + config: default + split: dev + revision: 8e0c766dbe9e16e1d221116a3f36795fbade07f6 + metrics: + - type: map + value: 32.68592539803807 + - type: mrr + value: 31.58968253968254 + - task: + type: Retrieval + dataset: + type: C-MTEB/MMarcoRetrieval + name: MTEB MMarcoRetrieval + config: default + split: dev + revision: 539bbde593d947e2a124ba72651aafc09eb33fc2 + metrics: + - type: map_at_1 + value: 71.242 + - type: map_at_10 + value: 80.01 + - type: map_at_100 + value: 80.269 + - type: map_at_1000 + value: 80.276 + - type: map_at_3 + value: 78.335 + - type: map_at_5 + value: 79.471 + - type: mrr_at_1 + value: 73.668 + - type: mrr_at_10 + value: 80.515 + - type: mrr_at_100 + value: 80.738 + - type: mrr_at_1000 + value: 80.744 + - type: mrr_at_3 + value: 79.097 + - type: mrr_at_5 + value: 80.045 + - type: ndcg_at_1 + value: 73.668 + - type: ndcg_at_10 + value: 83.357 + - type: ndcg_at_100 + value: 84.442 + - type: ndcg_at_1000 + value: 84.619 + - type: ndcg_at_3 + value: 80.286 + - type: ndcg_at_5 + value: 82.155 + - type: precision_at_1 + value: 73.668 + - type: precision_at_10 + value: 9.905 + - type: precision_at_100 + value: 1.043 + - type: precision_at_1000 + value: 0.106 + - type: precision_at_3 + value: 30.024 + - type: precision_at_5 + value: 19.017 + - type: recall_at_1 + value: 71.242 + - type: recall_at_10 + value: 93.11 + - type: recall_at_100 + value: 97.85000000000001 + - type: recall_at_1000 + value: 99.21900000000001 + - type: recall_at_3 + value: 85.137 + - type: recall_at_5 + value: 89.548 + - task: + type: Retrieval + dataset: + type: mteb/msmarco + name: MTEB MSMARCO + config: default + split: dev + revision: c5a29a104738b98a9e76336939199e264163d4a0 + metrics: + - type: map_at_1 + value: 22.006999999999998 + - type: map_at_10 + value: 34.994 + - type: map_at_100 + value: 36.183 + - type: map_at_1000 + value: 36.227 + - type: map_at_3 + value: 30.75 + - type: map_at_5 + value: 33.155 + - type: mrr_at_1 + value: 22.679 + - type: mrr_at_10 + value: 35.619 + - type: mrr_at_100 + value: 36.732 + - type: mrr_at_1000 + value: 36.77 + - type: mrr_at_3 + value: 31.44 + - type: mrr_at_5 + value: 33.811 + - type: ndcg_at_1 + value: 22.679 + - type: ndcg_at_10 + value: 42.376000000000005 + - type: ndcg_at_100 + value: 48.001 + - type: ndcg_at_1000 + value: 49.059999999999995 + - type: ndcg_at_3 + value: 33.727000000000004 + - type: ndcg_at_5 + value: 38.013000000000005 + - type: precision_at_1 + value: 22.679 + - type: precision_at_10 + value: 6.815 + - type: precision_at_100 + value: 0.962 + - type: precision_at_1000 + value: 0.105 + - type: precision_at_3 + value: 14.441 + - type: precision_at_5 + value: 10.817 + - type: recall_at_1 + value: 22.006999999999998 + - type: recall_at_10 + value: 65.158 + - type: recall_at_100 + value: 90.997 + - type: recall_at_1000 + value: 98.996 + - type: recall_at_3 + value: 41.646 + - type: recall_at_5 + value: 51.941 + - task: + type: Classification + dataset: + type: mteb/mtop_domain + name: MTEB MTOPDomainClassification (en) + config: en + split: test + revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf + metrics: + - type: accuracy + value: 97.55129958960327 + - type: f1 + value: 97.43464802675416 + - task: + type: Classification + dataset: + type: mteb/mtop_intent + name: MTEB MTOPIntentClassification (en) + config: en + split: test + revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba + metrics: + - type: accuracy + value: 90.4719562243502 + - type: f1 + value: 70.76460034443902 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_intent + name: MTEB MassiveIntentClassification (zh-CN) + config: zh-CN + split: test + revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 + metrics: + - type: accuracy + value: 79.88231338264963 + - type: f1 + value: 77.13536609019927 + - task: + type: Classification + dataset: + type: mteb/amazon_massive_scenario + name: MTEB MassiveScenarioClassification (zh-CN) + config: zh-CN + split: test + revision: 7d571f92784cd94a019292a1f45445077d0ef634 + metrics: + - type: accuracy + value: 84.50571620712844 + - type: f1 + value: 83.4128768262944 + - task: + type: Retrieval + dataset: + type: C-MTEB/MedicalRetrieval + name: MTEB MedicalRetrieval + config: default + split: dev + revision: 2039188fb5800a9803ba5048df7b76e6fb151fc6 + metrics: + - type: map_at_1 + value: 56.89999999999999 + - type: map_at_10 + value: 63.438 + - type: map_at_100 + value: 63.956 + - type: map_at_1000 + value: 63.991 + - type: map_at_3 + value: 61.983 + - type: map_at_5 + value: 62.778 + - type: mrr_at_1 + value: 56.99999999999999 + - type: mrr_at_10 + value: 63.483000000000004 + - type: mrr_at_100 + value: 63.993 + - type: mrr_at_1000 + value: 64.02799999999999 + - type: mrr_at_3 + value: 62.017 + - type: mrr_at_5 + value: 62.812 + - type: ndcg_at_1 + value: 56.89999999999999 + - type: ndcg_at_10 + value: 66.61 + - type: ndcg_at_100 + value: 69.387 + - type: ndcg_at_1000 + value: 70.327 + - type: ndcg_at_3 + value: 63.583999999999996 + - type: ndcg_at_5 + value: 65.0 + - type: precision_at_1 + value: 56.89999999999999 + - type: precision_at_10 + value: 7.66 + - type: precision_at_100 + value: 0.902 + - type: precision_at_1000 + value: 0.098 + - type: precision_at_3 + value: 22.733 + - type: precision_at_5 + value: 14.32 + - type: recall_at_1 + value: 56.89999999999999 + - type: recall_at_10 + value: 76.6 + - type: recall_at_100 + value: 90.2 + - type: recall_at_1000 + value: 97.6 + - type: recall_at_3 + value: 68.2 + - type: recall_at_5 + value: 71.6 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-p2p + name: MTEB MedrxivClusteringP2P + config: default + split: test + revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 + metrics: + - type: v_measure + value: 40.32149153753394 + - task: + type: Clustering + dataset: + type: mteb/medrxiv-clustering-s2s + name: MTEB MedrxivClusteringS2S + config: default + split: test + revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 + metrics: + - type: v_measure + value: 39.40319973495386 + - task: + type: Reranking + dataset: + type: mteb/mind_small + name: MTEB MindSmallReranking + config: default + split: test + revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 + metrics: + - type: map + value: 33.9769104898534 + - type: mrr + value: 35.32831430710564 + - task: + type: Classification + dataset: + type: C-MTEB/MultilingualSentiment-classification + name: MTEB MultilingualSentiment + config: default + split: validation + revision: 46958b007a63fdbf239b7672c25d0bea67b5ea1a + metrics: + - type: accuracy + value: 81.80666666666667 + - type: f1 + value: 81.83278699395508 + - task: + type: Retrieval + dataset: + type: mteb/nfcorpus + name: MTEB NFCorpus + config: default + split: test + revision: ec0fa4fe99da2ff19ca1214b7966684033a58814 + metrics: + - type: map_at_1 + value: 6.3 + - type: map_at_10 + value: 14.151 + - type: map_at_100 + value: 18.455 + - type: map_at_1000 + value: 20.186999999999998 + - type: map_at_3 + value: 10.023 + - type: map_at_5 + value: 11.736 + - type: mrr_at_1 + value: 49.536 + - type: mrr_at_10 + value: 58.516 + - type: mrr_at_100 + value: 59.084 + - type: mrr_at_1000 + value: 59.114 + - type: mrr_at_3 + value: 56.45 + - type: mrr_at_5 + value: 57.642 + - type: ndcg_at_1 + value: 47.522999999999996 + - type: ndcg_at_10 + value: 38.4 + - type: ndcg_at_100 + value: 35.839999999999996 + - type: ndcg_at_1000 + value: 44.998 + - type: ndcg_at_3 + value: 43.221 + - type: ndcg_at_5 + value: 40.784 + - type: precision_at_1 + value: 49.536 + - type: precision_at_10 + value: 28.977999999999998 + - type: precision_at_100 + value: 9.378 + - type: precision_at_1000 + value: 2.2769999999999997 + - type: precision_at_3 + value: 40.454 + - type: precision_at_5 + value: 35.418 + - type: recall_at_1 + value: 6.3 + - type: recall_at_10 + value: 19.085 + - type: recall_at_100 + value: 38.18 + - type: recall_at_1000 + value: 71.219 + - type: recall_at_3 + value: 11.17 + - type: recall_at_5 + value: 13.975999999999999 + - task: + type: Retrieval + dataset: + type: mteb/nq + name: MTEB NQ + config: default + split: test + revision: b774495ed302d8c44a3a7ea25c90dbce03968f31 + metrics: + - type: map_at_1 + value: 43.262 + - type: map_at_10 + value: 60.387 + - type: map_at_100 + value: 61.102000000000004 + - type: map_at_1000 + value: 61.111000000000004 + - type: map_at_3 + value: 56.391999999999996 + - type: map_at_5 + value: 58.916000000000004 + - type: mrr_at_1 + value: 48.725 + - type: mrr_at_10 + value: 62.812999999999995 + - type: mrr_at_100 + value: 63.297000000000004 + - type: mrr_at_1000 + value: 63.304 + - type: mrr_at_3 + value: 59.955999999999996 + - type: mrr_at_5 + value: 61.785999999999994 + - type: ndcg_at_1 + value: 48.696 + - type: ndcg_at_10 + value: 67.743 + - type: ndcg_at_100 + value: 70.404 + - type: ndcg_at_1000 + value: 70.60600000000001 + - type: ndcg_at_3 + value: 60.712999999999994 + - type: ndcg_at_5 + value: 64.693 + - type: precision_at_1 + value: 48.696 + - type: precision_at_10 + value: 10.513 + - type: precision_at_100 + value: 1.196 + - type: precision_at_1000 + value: 0.121 + - type: precision_at_3 + value: 27.221 + - type: precision_at_5 + value: 18.701999999999998 + - type: recall_at_1 + value: 43.262 + - type: recall_at_10 + value: 87.35300000000001 + - type: recall_at_100 + value: 98.31299999999999 + - type: recall_at_1000 + value: 99.797 + - type: recall_at_3 + value: 69.643 + - type: recall_at_5 + value: 78.645 + - task: + type: PairClassification + dataset: + type: C-MTEB/OCNLI + name: MTEB Ocnli + config: default + split: validation + revision: 66e76a618a34d6d565d5538088562851e6daa7ec + metrics: + - type: cos_sim_accuracy + value: 72.65836491608013 + - type: cos_sim_ap + value: 78.75807247519593 + - type: cos_sim_f1 + value: 74.84662576687117 + - type: cos_sim_precision + value: 63.97003745318352 + - type: cos_sim_recall + value: 90.17951425554382 + - type: dot_accuracy + value: 72.65836491608013 + - type: dot_ap + value: 78.75807247519593 + - type: dot_f1 + value: 74.84662576687117 + - type: dot_precision + value: 63.97003745318352 + - type: dot_recall + value: 90.17951425554382 + - type: euclidean_accuracy + value: 72.65836491608013 + - type: euclidean_ap + value: 78.75807247519593 + - type: euclidean_f1 + value: 74.84662576687117 + - type: euclidean_precision + value: 63.97003745318352 + - type: euclidean_recall + value: 90.17951425554382 + - type: manhattan_accuracy + value: 72.00866269626421 + - type: manhattan_ap + value: 78.34663376353235 + - type: manhattan_f1 + value: 74.13234613604813 + - type: manhattan_precision + value: 65.98023064250413 + - type: manhattan_recall + value: 84.58289334741288 + - type: max_accuracy + value: 72.65836491608013 + - type: max_ap + value: 78.75807247519593 + - type: max_f1 + value: 74.84662576687117 + - task: + type: Classification + dataset: + type: C-MTEB/OnlineShopping-classification + name: MTEB OnlineShopping + config: default + split: test + revision: e610f2ebd179a8fda30ae534c3878750a96db120 + metrics: + - type: accuracy + value: 94.46999999999998 + - type: ap + value: 93.56401511160975 + - type: f1 + value: 94.46692790889986 + - task: + type: STS + dataset: + type: C-MTEB/PAWSX + name: MTEB PAWSX + config: default + split: test + revision: 9c6a90e430ac22b5779fb019a23e820b11a8b5e1 + metrics: + - type: cos_sim_pearson + value: 15.232590709271829 + - type: cos_sim_spearman + value: 17.204830998481093 + - type: euclidean_pearson + value: 19.543519063265673 + - type: euclidean_spearman + value: 17.204830998481093 + - type: manhattan_pearson + value: 19.5722663367917 + - type: manhattan_spearman + value: 17.25656568963978 + - task: + type: STS + dataset: + type: C-MTEB/QBQTC + name: MTEB QBQTC + config: default + split: test + revision: 790b0510dc52b1553e8c49f3d2afb48c0e5c48b7 + metrics: + - type: cos_sim_pearson + value: 34.81965984725406 + - type: cos_sim_spearman + value: 37.697257783907645 + - type: euclidean_pearson + value: 35.87624912573427 + - type: euclidean_spearman + value: 37.69725778300291 + - type: manhattan_pearson + value: 35.69021326773646 + - type: manhattan_spearman + value: 37.54369033366458 + - task: + type: Retrieval + dataset: + type: mteb/quora + name: MTEB QuoraRetrieval + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 69.952 + - type: map_at_10 + value: 84.134 + - type: map_at_100 + value: 84.795 + - type: map_at_1000 + value: 84.809 + - type: map_at_3 + value: 81.085 + - type: map_at_5 + value: 82.976 + - type: mrr_at_1 + value: 80.56 + - type: mrr_at_10 + value: 87.105 + - type: mrr_at_100 + value: 87.20700000000001 + - type: mrr_at_1000 + value: 87.208 + - type: mrr_at_3 + value: 86.118 + - type: mrr_at_5 + value: 86.79299999999999 + - type: ndcg_at_1 + value: 80.57 + - type: ndcg_at_10 + value: 88.047 + - type: ndcg_at_100 + value: 89.266 + - type: ndcg_at_1000 + value: 89.34299999999999 + - type: ndcg_at_3 + value: 85.052 + - type: ndcg_at_5 + value: 86.68299999999999 + - type: precision_at_1 + value: 80.57 + - type: precision_at_10 + value: 13.439 + - type: precision_at_100 + value: 1.536 + - type: precision_at_1000 + value: 0.157 + - type: precision_at_3 + value: 37.283 + - type: precision_at_5 + value: 24.558 + - type: recall_at_1 + value: 69.952 + - type: recall_at_10 + value: 95.599 + - type: recall_at_100 + value: 99.67099999999999 + - type: recall_at_1000 + value: 99.983 + - type: recall_at_3 + value: 87.095 + - type: recall_at_5 + value: 91.668 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering + name: MTEB RedditClustering + config: default + split: test + revision: 24640382cdbf8abc73003fb0fa6d111a705499eb + metrics: + - type: v_measure + value: 70.12802769698337 + - task: + type: Clustering + dataset: + type: mteb/reddit-clustering-p2p + name: MTEB RedditClusteringP2P + config: default + split: test + revision: 282350215ef01743dc01b456c7f5241fa8937f16 + metrics: + - type: v_measure + value: 71.19047621740276 + - task: + type: Retrieval + dataset: + type: mteb/scidocs + name: MTEB SCIDOCS + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 6.208 + - type: map_at_10 + value: 17.036 + - type: map_at_100 + value: 20.162 + - type: map_at_1000 + value: 20.552 + - type: map_at_3 + value: 11.591999999999999 + - type: map_at_5 + value: 14.349 + - type: mrr_at_1 + value: 30.599999999999998 + - type: mrr_at_10 + value: 43.325 + - type: mrr_at_100 + value: 44.281 + - type: mrr_at_1000 + value: 44.31 + - type: mrr_at_3 + value: 39.300000000000004 + - type: mrr_at_5 + value: 41.730000000000004 + - type: ndcg_at_1 + value: 30.599999999999998 + - type: ndcg_at_10 + value: 27.378000000000004 + - type: ndcg_at_100 + value: 37.768 + - type: ndcg_at_1000 + value: 43.275000000000006 + - type: ndcg_at_3 + value: 25.167 + - type: ndcg_at_5 + value: 22.537 + - type: precision_at_1 + value: 30.599999999999998 + - type: precision_at_10 + value: 14.46 + - type: precision_at_100 + value: 2.937 + - type: precision_at_1000 + value: 0.424 + - type: precision_at_3 + value: 23.666999999999998 + - type: precision_at_5 + value: 20.14 + - type: recall_at_1 + value: 6.208 + - type: recall_at_10 + value: 29.29 + - type: recall_at_100 + value: 59.565 + - type: recall_at_1000 + value: 85.963 + - type: recall_at_3 + value: 14.407 + - type: recall_at_5 + value: 20.412 + - task: + type: STS + dataset: + type: mteb/sickr-sts + name: MTEB SICK-R + config: default + split: test + revision: a6ea5a8cab320b040a23452cc28066d9beae2cee + metrics: + - type: cos_sim_pearson + value: 82.65489797062479 + - type: cos_sim_spearman + value: 75.34808277034776 + - type: euclidean_pearson + value: 79.28097508609059 + - type: euclidean_spearman + value: 75.3480824481771 + - type: manhattan_pearson + value: 78.83529262858895 + - type: manhattan_spearman + value: 74.96318170787025 + - task: + type: STS + dataset: + type: mteb/sts12-sts + name: MTEB STS12 + config: default + split: test + revision: a0d554a64d88156834ff5ae9920b964011b16384 + metrics: + - type: cos_sim_pearson + value: 85.06920163624117 + - type: cos_sim_spearman + value: 77.24549887905519 + - type: euclidean_pearson + value: 85.58740280635266 + - type: euclidean_spearman + value: 77.24652170306867 + - type: manhattan_pearson + value: 85.77917470895854 + - type: manhattan_spearman + value: 77.54426264008778 + - task: + type: STS + dataset: + type: mteb/sts13-sts + name: MTEB STS13 + config: default + split: test + revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca + metrics: + - type: cos_sim_pearson + value: 80.9762185094084 + - type: cos_sim_spearman + value: 80.98090253728394 + - type: euclidean_pearson + value: 80.88451512135202 + - type: euclidean_spearman + value: 80.98090253728394 + - type: manhattan_pearson + value: 80.7606664599805 + - type: manhattan_spearman + value: 80.87197716950068 + - task: + type: STS + dataset: + type: mteb/sts14-sts + name: MTEB STS14 + config: default + split: test + revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 + metrics: + - type: cos_sim_pearson + value: 81.91239166620251 + - type: cos_sim_spearman + value: 76.36798509005328 + - type: euclidean_pearson + value: 80.6393872615655 + - type: euclidean_spearman + value: 76.36798836339655 + - type: manhattan_pearson + value: 80.50765898709096 + - type: manhattan_spearman + value: 76.31958999372227 + - task: + type: STS + dataset: + type: mteb/sts15-sts + name: MTEB STS15 + config: default + split: test + revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 + metrics: + - type: cos_sim_pearson + value: 83.68800355225011 + - type: cos_sim_spearman + value: 84.47549220803403 + - type: euclidean_pearson + value: 83.86859896384159 + - type: euclidean_spearman + value: 84.47551564954756 + - type: manhattan_pearson + value: 83.74201103044383 + - type: manhattan_spearman + value: 84.39903759718152 + - task: + type: STS + dataset: + type: mteb/sts16-sts + name: MTEB STS16 + config: default + split: test + revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 + metrics: + - type: cos_sim_pearson + value: 78.24197302553398 + - type: cos_sim_spearman + value: 79.44526946553684 + - type: euclidean_pearson + value: 79.12747636563053 + - type: euclidean_spearman + value: 79.44526946553684 + - type: manhattan_pearson + value: 78.94407504115144 + - type: manhattan_spearman + value: 79.24858249553934 + - task: + type: STS + dataset: + type: mteb/sts17-crosslingual-sts + name: MTEB STS17 (en-en) + config: en-en + split: test + revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d + metrics: + - type: cos_sim_pearson + value: 89.15329071763895 + - type: cos_sim_spearman + value: 88.67251952242073 + - type: euclidean_pearson + value: 89.16908249259637 + - type: euclidean_spearman + value: 88.67251952242073 + - type: manhattan_pearson + value: 89.1279735094785 + - type: manhattan_spearman + value: 88.81731953658254 + - task: + type: STS + dataset: + type: mteb/sts22-crosslingual-sts + name: MTEB STS22 (en) + config: en + split: test + revision: eea2b4fe26a775864c896887d910b76a8098ad3f + metrics: + - type: cos_sim_pearson + value: 69.44962535524695 + - type: cos_sim_spearman + value: 71.75861316291065 + - type: euclidean_pearson + value: 72.42347748883483 + - type: euclidean_spearman + value: 71.75861316291065 + - type: manhattan_pearson + value: 72.57545073534365 + - type: manhattan_spearman + value: 71.90087671205625 + - task: + type: STS + dataset: + type: C-MTEB/STSB + name: MTEB STSB + config: default + split: test + revision: 0cde68302b3541bb8b3c340dc0644b0b745b3dc0 + metrics: + - type: cos_sim_pearson + value: 77.39283860361535 + - type: cos_sim_spearman + value: 77.14577975930179 + - type: euclidean_pearson + value: 76.64560889817044 + - type: euclidean_spearman + value: 77.14577975930179 + - type: manhattan_pearson + value: 76.82848456242104 + - type: manhattan_spearman + value: 77.37708521460667 + - task: + type: STS + dataset: + type: mteb/stsbenchmark-sts + name: MTEB STSBenchmark + config: default + split: test + revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 + metrics: + - type: cos_sim_pearson + value: 84.14036697885552 + - type: cos_sim_spearman + value: 83.10901632378086 + - type: euclidean_pearson + value: 83.59991244380554 + - type: euclidean_spearman + value: 83.10901632378086 + - type: manhattan_pearson + value: 83.56632266895113 + - type: manhattan_spearman + value: 83.17610542379353 + - task: + type: Reranking + dataset: + type: mteb/scidocs-reranking + name: MTEB SciDocsRR + config: default + split: test + revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab + metrics: + - type: map + value: 88.98026856845443 + - type: mrr + value: 96.80987494712984 + - task: + type: Retrieval + dataset: + type: mteb/scifact + name: MTEB SciFact + config: default + split: test + revision: 0228b52cf27578f30900b9e5271d331663a030d7 + metrics: + - type: map_at_1 + value: 41.661 + - type: map_at_10 + value: 55.492 + - type: map_at_100 + value: 56.237 + - type: map_at_1000 + value: 56.255 + - type: map_at_3 + value: 51.05 + - type: map_at_5 + value: 54.01200000000001 + - type: mrr_at_1 + value: 44.0 + - type: mrr_at_10 + value: 56.443 + - type: mrr_at_100 + value: 57.13700000000001 + - type: mrr_at_1000 + value: 57.152 + - type: mrr_at_3 + value: 52.944 + - type: mrr_at_5 + value: 55.37800000000001 + - type: ndcg_at_1 + value: 44.0 + - type: ndcg_at_10 + value: 62.312999999999995 + - type: ndcg_at_100 + value: 65.63900000000001 + - type: ndcg_at_1000 + value: 66.019 + - type: ndcg_at_3 + value: 54.67999999999999 + - type: ndcg_at_5 + value: 59.284000000000006 + - type: precision_at_1 + value: 44.0 + - type: precision_at_10 + value: 9.367 + - type: precision_at_100 + value: 1.0999999999999999 + - type: precision_at_1000 + value: 0.11299999999999999 + - type: precision_at_3 + value: 22.778000000000002 + - type: precision_at_5 + value: 16.467000000000002 + - type: recall_at_1 + value: 41.661 + - type: recall_at_10 + value: 82.306 + - type: recall_at_100 + value: 97.167 + - type: recall_at_1000 + value: 100.0 + - type: recall_at_3 + value: 62.461 + - type: recall_at_5 + value: 73.411 + - task: + type: PairClassification + dataset: + type: mteb/sprintduplicatequestions-pairclassification + name: MTEB SprintDuplicateQuestions + config: default + split: test + revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 + metrics: + - type: cos_sim_accuracy + value: 99.90693069306931 + - type: cos_sim_ap + value: 97.86562522779887 + - type: cos_sim_f1 + value: 95.27162977867204 + - type: cos_sim_precision + value: 95.8502024291498 + - type: cos_sim_recall + value: 94.69999999999999 + - type: dot_accuracy + value: 99.90693069306931 + - type: dot_ap + value: 97.86562522779887 + - type: dot_f1 + value: 95.27162977867204 + - type: dot_precision + value: 95.8502024291498 + - type: dot_recall + value: 94.69999999999999 + - type: euclidean_accuracy + value: 99.90693069306931 + - type: euclidean_ap + value: 97.86562522779887 + - type: euclidean_f1 + value: 95.27162977867204 + - type: euclidean_precision + value: 95.8502024291498 + - type: euclidean_recall + value: 94.69999999999999 + - type: manhattan_accuracy + value: 99.90693069306931 + - type: manhattan_ap + value: 97.85527044211135 + - type: manhattan_f1 + value: 95.27638190954774 + - type: manhattan_precision + value: 95.75757575757575 + - type: manhattan_recall + value: 94.8 + - type: max_accuracy + value: 99.90693069306931 + - type: max_ap + value: 97.86562522779887 + - type: max_f1 + value: 95.27638190954774 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering + name: MTEB StackExchangeClustering + config: default + split: test + revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 + metrics: + - type: v_measure + value: 78.89230351770412 + - task: + type: Clustering + dataset: + type: mteb/stackexchange-clustering-p2p + name: MTEB StackExchangeClusteringP2P + config: default + split: test + revision: 815ca46b2622cec33ccafc3735d572c266efdb44 + metrics: + - type: v_measure + value: 47.52328347080355 + - task: + type: Reranking + dataset: + type: mteb/stackoverflowdupquestions-reranking + name: MTEB StackOverflowDupQuestions + config: default + split: test + revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 + metrics: + - type: map + value: 57.74702024461137 + - type: mrr + value: 58.88074548001018 + - task: + type: Summarization + dataset: + type: mteb/summeval + name: MTEB SummEval + config: default + split: test + revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c + metrics: + - type: cos_sim_pearson + value: 30.047929797503592 + - type: cos_sim_spearman + value: 29.465371781983567 + - type: dot_pearson + value: 30.047927690552335 + - type: dot_spearman + value: 29.465371781983567 + - task: + type: Reranking + dataset: + type: C-MTEB/T2Reranking + name: MTEB T2Reranking + config: default + split: dev + revision: 76631901a18387f85eaa53e5450019b87ad58ef9 + metrics: + - type: map + value: 66.54177017978034 + - type: mrr + value: 76.76094292377299 + - task: + type: Retrieval + dataset: + type: C-MTEB/T2Retrieval + name: MTEB T2Retrieval + config: default + split: dev + revision: 8731a845f1bf500a4f111cf1070785c793d10e64 + metrics: + - type: map_at_1 + value: 28.608 + - type: map_at_10 + value: 81.266 + - type: map_at_100 + value: 84.714 + - type: map_at_1000 + value: 84.758 + - type: map_at_3 + value: 56.967 + - type: map_at_5 + value: 70.14 + - type: mrr_at_1 + value: 91.881 + - type: mrr_at_10 + value: 94.11699999999999 + - type: mrr_at_100 + value: 94.178 + - type: mrr_at_1000 + value: 94.181 + - type: mrr_at_3 + value: 93.772 + - type: mrr_at_5 + value: 93.997 + - type: ndcg_at_1 + value: 91.881 + - type: ndcg_at_10 + value: 87.954 + - type: ndcg_at_100 + value: 90.904 + - type: ndcg_at_1000 + value: 91.326 + - type: ndcg_at_3 + value: 88.838 + - type: ndcg_at_5 + value: 87.764 + - type: precision_at_1 + value: 91.881 + - type: precision_at_10 + value: 43.628 + - type: precision_at_100 + value: 5.082 + - type: precision_at_1000 + value: 0.518 + - type: precision_at_3 + value: 77.62400000000001 + - type: precision_at_5 + value: 65.269 + - type: recall_at_1 + value: 28.608 + - type: recall_at_10 + value: 87.06 + - type: recall_at_100 + value: 96.815 + - type: recall_at_1000 + value: 98.969 + - type: recall_at_3 + value: 58.506 + - type: recall_at_5 + value: 73.21600000000001 + - task: + type: Classification + dataset: + type: C-MTEB/TNews-classification + name: MTEB TNews + config: default + split: validation + revision: 317f262bf1e6126357bbe89e875451e4b0938fe4 + metrics: + - type: accuracy + value: 56.691999999999986 + - type: f1 + value: 54.692084702788065 + - task: + type: Retrieval + dataset: + type: mteb/trec-covid + name: MTEB TRECCOVID + config: default + split: test + revision: None + metrics: + - type: map_at_1 + value: 0.181 + - type: map_at_10 + value: 1.2 + - type: map_at_100 + value: 6.078 + - type: map_at_1000 + value: 14.940000000000001 + - type: map_at_3 + value: 0.45599999999999996 + - type: map_at_5 + value: 0.692 + - type: mrr_at_1 + value: 66.0 + - type: mrr_at_10 + value: 75.819 + - type: mrr_at_100 + value: 76.168 + - type: mrr_at_1000 + value: 76.168 + - type: mrr_at_3 + value: 72.667 + - type: mrr_at_5 + value: 74.86699999999999 + - type: ndcg_at_1 + value: 59.0 + - type: ndcg_at_10 + value: 52.60399999999999 + - type: ndcg_at_100 + value: 38.049 + - type: ndcg_at_1000 + value: 38.576 + - type: ndcg_at_3 + value: 57.235 + - type: ndcg_at_5 + value: 56.147000000000006 + - type: precision_at_1 + value: 66.0 + - type: precision_at_10 + value: 55.2 + - type: precision_at_100 + value: 38.78 + - type: precision_at_1000 + value: 16.986 + - type: precision_at_3 + value: 62.666999999999994 + - type: precision_at_5 + value: 60.8 + - type: recall_at_1 + value: 0.181 + - type: recall_at_10 + value: 1.471 + - type: recall_at_100 + value: 9.748999999999999 + - type: recall_at_1000 + value: 37.667 + - type: recall_at_3 + value: 0.49300000000000005 + - type: recall_at_5 + value: 0.7979999999999999 + - task: + type: Clustering + dataset: + type: C-MTEB/ThuNewsClusteringP2P + name: MTEB ThuNewsClusteringP2P + config: default + split: test + revision: 5798586b105c0434e4f0fe5e767abe619442cf93 + metrics: + - type: v_measure + value: 78.68783858143624 + - task: + type: Clustering + dataset: + type: C-MTEB/ThuNewsClusteringS2S + name: MTEB ThuNewsClusteringS2S + config: default + split: test + revision: 8a8b2caeda43f39e13c4bc5bea0f8a667896e10d + metrics: + - type: v_measure + value: 77.04148998956299 + - task: + type: Retrieval + dataset: + type: mteb/touche2020 + name: MTEB Touche2020 + config: default + split: test + revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f + metrics: + - type: map_at_1 + value: 1.936 + - type: map_at_10 + value: 8.942 + - type: map_at_100 + value: 14.475999999999999 + - type: map_at_1000 + value: 16.156000000000002 + - type: map_at_3 + value: 4.865 + - type: map_at_5 + value: 6.367000000000001 + - type: mrr_at_1 + value: 26.531 + - type: mrr_at_10 + value: 42.846000000000004 + - type: mrr_at_100 + value: 43.441 + - type: mrr_at_1000 + value: 43.441 + - type: mrr_at_3 + value: 36.735 + - type: mrr_at_5 + value: 40.510000000000005 + - type: ndcg_at_1 + value: 24.490000000000002 + - type: ndcg_at_10 + value: 23.262 + - type: ndcg_at_100 + value: 34.959 + - type: ndcg_at_1000 + value: 47.258 + - type: ndcg_at_3 + value: 25.27 + - type: ndcg_at_5 + value: 24.246000000000002 + - type: precision_at_1 + value: 26.531 + - type: precision_at_10 + value: 20.408 + - type: precision_at_100 + value: 7.306 + - type: precision_at_1000 + value: 1.541 + - type: precision_at_3 + value: 26.531 + - type: precision_at_5 + value: 24.082 + - type: recall_at_1 + value: 1.936 + - type: recall_at_10 + value: 15.712000000000002 + - type: recall_at_100 + value: 45.451 + - type: recall_at_1000 + value: 83.269 + - type: recall_at_3 + value: 6.442 + - type: recall_at_5 + value: 9.151 + - task: + type: Classification + dataset: + type: mteb/toxic_conversations_50k + name: MTEB ToxicConversationsClassification + config: default + split: test + revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c + metrics: + - type: accuracy + value: 86.564 + - type: ap + value: 34.58766846081731 + - type: f1 + value: 72.32759831978161 + - task: + type: Classification + dataset: + type: mteb/tweet_sentiment_extraction + name: MTEB TweetSentimentExtractionClassification + config: default + split: test + revision: d604517c81ca91fe16a244d1248fc021f9ecee7a + metrics: + - type: accuracy + value: 77.80418788907753 + - type: f1 + value: 78.1047638421972 + - task: + type: Clustering + dataset: + type: mteb/twentynewsgroups-clustering + name: MTEB TwentyNewsgroupsClustering + config: default + split: test + revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 + metrics: + - type: v_measure + value: 59.20888659980063 + - task: + type: PairClassification + dataset: + type: mteb/twittersemeval2015-pairclassification + name: MTEB TwitterSemEval2015 + config: default + split: test + revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 + metrics: + - type: cos_sim_accuracy + value: 85.45627943017226 + - type: cos_sim_ap + value: 72.25550061847534 + - type: cos_sim_f1 + value: 66.0611487783037 + - type: cos_sim_precision + value: 64.11720884032779 + - type: cos_sim_recall + value: 68.12664907651715 + - type: dot_accuracy + value: 85.45627943017226 + - type: dot_ap + value: 72.25574305366213 + - type: dot_f1 + value: 66.0611487783037 + - type: dot_precision + value: 64.11720884032779 + - type: dot_recall + value: 68.12664907651715 + - type: euclidean_accuracy + value: 85.45627943017226 + - type: euclidean_ap + value: 72.2557084446673 + - type: euclidean_f1 + value: 66.0611487783037 + - type: euclidean_precision + value: 64.11720884032779 + - type: euclidean_recall + value: 68.12664907651715 + - type: manhattan_accuracy + value: 85.32514752339513 + - type: manhattan_ap + value: 71.52919143472248 + - type: manhattan_f1 + value: 65.60288251190322 + - type: manhattan_precision + value: 64.02913840743531 + - type: manhattan_recall + value: 67.25593667546174 + - type: max_accuracy + value: 85.45627943017226 + - type: max_ap + value: 72.25574305366213 + - type: max_f1 + value: 66.0611487783037 + - task: + type: PairClassification + dataset: + type: mteb/twitterurlcorpus-pairclassification + name: MTEB TwitterURLCorpus + config: default + split: test + revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf + metrics: + - type: cos_sim_accuracy + value: 88.34167733923235 + - type: cos_sim_ap + value: 84.58587730660244 + - type: cos_sim_f1 + value: 77.14170010676287 + - type: cos_sim_precision + value: 73.91181657848324 + - type: cos_sim_recall + value: 80.66676932553126 + - type: dot_accuracy + value: 88.34167733923235 + - type: dot_ap + value: 84.58585083616217 + - type: dot_f1 + value: 77.14170010676287 + - type: dot_precision + value: 73.91181657848324 + - type: dot_recall + value: 80.66676932553126 + - type: euclidean_accuracy + value: 88.34167733923235 + - type: euclidean_ap + value: 84.5858781355044 + - type: euclidean_f1 + value: 77.14170010676287 + - type: euclidean_precision + value: 73.91181657848324 + - type: euclidean_recall + value: 80.66676932553126 + - type: manhattan_accuracy + value: 88.28152287809989 + - type: manhattan_ap + value: 84.53184837110165 + - type: manhattan_f1 + value: 77.13582823915313 + - type: manhattan_precision + value: 74.76156069364161 + - type: manhattan_recall + value: 79.66584539574993 + - type: max_accuracy + value: 88.34167733923235 + - type: max_ap + value: 84.5858781355044 + - type: max_f1 + value: 77.14170010676287 + - task: + type: Retrieval + dataset: + type: C-MTEB/VideoRetrieval + name: MTEB VideoRetrieval + config: default + split: dev + revision: 58c2597a5943a2ba48f4668c3b90d796283c5639 + metrics: + - type: map_at_1 + value: 66.10000000000001 + - type: map_at_10 + value: 75.238 + - type: map_at_100 + value: 75.559 + - type: map_at_1000 + value: 75.565 + - type: map_at_3 + value: 73.68299999999999 + - type: map_at_5 + value: 74.63300000000001 + - type: mrr_at_1 + value: 66.10000000000001 + - type: mrr_at_10 + value: 75.238 + - type: mrr_at_100 + value: 75.559 + - type: mrr_at_1000 + value: 75.565 + - type: mrr_at_3 + value: 73.68299999999999 + - type: mrr_at_5 + value: 74.63300000000001 + - type: ndcg_at_1 + value: 66.10000000000001 + - type: ndcg_at_10 + value: 79.25999999999999 + - type: ndcg_at_100 + value: 80.719 + - type: ndcg_at_1000 + value: 80.862 + - type: ndcg_at_3 + value: 76.08200000000001 + - type: ndcg_at_5 + value: 77.782 + - type: precision_at_1 + value: 66.10000000000001 + - type: precision_at_10 + value: 9.17 + - type: precision_at_100 + value: 0.983 + - type: precision_at_1000 + value: 0.099 + - type: precision_at_3 + value: 27.667 + - type: precision_at_5 + value: 17.419999999999998 + - type: recall_at_1 + value: 66.10000000000001 + - type: recall_at_10 + value: 91.7 + - type: recall_at_100 + value: 98.3 + - type: recall_at_1000 + value: 99.4 + - type: recall_at_3 + value: 83.0 + - type: recall_at_5 + value: 87.1 + - task: + type: Classification + dataset: + type: C-MTEB/waimai-classification + name: MTEB Waimai + config: default + split: test + revision: 339287def212450dcaa9df8c22bf93e9980c7023 + metrics: + - type: accuracy + value: 91.13 + - type: ap + value: 79.55231335947015 + - type: f1 + value: 89.63091922203914 +--- + +

+ GME Logo +

+ +

GME: General Multimodal Embeddings

+ +## gme-Qwen2-VL-7B-Instruct + +We are excited to present `GME-Qwen2VL` models, our first generation **multimodal embedding models** for text and images, +which are based on advanced [Qwen2-VL](https://huggingface.co/collections/Qwen/qwen2-vl-66cee7455501d7126940800d) multimodal large language models (MLLMs). + +The `GME-Qwen2VL` models support three input forms: **text**, **image**, and **image-text pair**, all of which can produce universal vector representations and have powerful retrieval performance. + +- **High Performance**: Achieves state-of-the-art (SOTA) results in our universal multimodal retrieval benchmark (**UMRB**) and strong **MTEB** evaluation scores. +- **Dynamic Image Resolution**: Benefiting from `Qwen2-VL` and our training data, GME models support dynamic resolution image input. +Our models are able to perform leadingly in the **visual document retrieval** task which requires fine-grained understanding of document screenshots. +You can control to balance performance and efficiency. + +**Developed by**: Tongyi Lab, Alibaba Group + +**Paper**: GME: Improving Universal Multimodal Retrieval by Multimodal LLMs + + +## Model List +| Models | Model Size | Max Seq. Length | Dimension | MTEB-en| UMRB | +|:-----: | :-----: |:-----: |:-----: |:-----: | :-----: | +|[`gme-Qwen2VL-2B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-2B-Instruct) | 2.21B | 32768 | 1536 | - | 64.45 | +|[`gme-Qwen2VL-7B`](https://huggingface.co/Alibaba-NLP/gme-Qwen2-VL-7B-Instruct) | 8.29B | 32768 | 3584 | - | 67.02 | + +## Usage + +**Use with custom code** + +```python +# You can find the script gme_inference.py in https://huggingface.co/Alibaba-NLP/gme-Qwen2VL-2B/blob/main/scripts/gme_inference.py +from gme_inference import GmeQwen2VL + +model = GmeQwen2VL('Alibaba-NLP/gme-Qwen2-VL-7B-Instruct') + +texts = [ + "What kind of car is this?", + "The Tesla Cybertruck is a battery electric pickup truck built by Tesla, Inc. since 2023." +] +images = [ + 'https://en.wikipedia.org/wiki/File:Tesla_Cybertruck_damaged_window.jpg', + 'https://en.wikipedia.org/wiki/File:2024_Tesla_Cybertruck_Foundation_Series,_front_left_(Greenwich).jpg', +] + +# Single-modal embedding +e_text = gme.get_text_embeddings(texts=texts) +e_image = gme.get_image_embeddings(images=images) +print((e_text * e_image).sum(-1)) +## tensor([0.1702, 0.5278], dtype=torch.float16) + +# How to set embedding instruction +e_query = gme.get_text_embeddings(texts=texts, instruction='Find an image that matches the given text.') +# If is_query=False, we always use the default instruction. +e_corpus = gme.get_image_embeddings(images=images, is_query=False) +print((e_query * e_corpus).sum(-1)) +## tensor([0.2000, 0.5752], dtype=torch.float16) + +# Fused-modal embedding +e_fused = gme.get_fused_embeddings(texts=texts, images=images) +print((e_fused[0] * e_fused[1]).sum()) +## tensor(0.6826, dtype=torch.float16) + +``` + + + +## Evaluation + +We validated the performance on our universal multimodal retrieval benchmark (**UMRB**) among others. + +| | | Single-modal | | Cross-modal | | | Fused-modal | | | | Avg. | +|--------------------|------|:------------:|:---------:|:-----------:|:-----------:|:---------:|:-----------:|:----------:|:----------:|:-----------:|:----------:| +| | | T→T (16) | I→I (1) | T→I (4) | T→VD (10) | I→T (4) | T→IT (2) | IT→T (5) | IT→I (2) | IT→IT (3) | (47) | +| VISTA | 0.2B | 55.15 | **31.98** | 32.88 | 10.12 | 31.23 | 45.81 | 53.32 | 8.97 | 26.26 | 36.74 | +| CLIP-SF | 0.4B | 39.75 | 31.42 | 59.05 | 24.09 | 62.95 | 66.41 | 53.32 | 34.9 | 55.65 | 43.24 | +| One-Peace | 4B | 43.54 | 31.27 | 61.38 | 42.9 | 65.59 | 42.72 | 28.29 | 6.73 | 23.41 | 42.03 | +| DSE | 4.2B | 48.94 | 27.92 | 40.75 | 78.21 | 52.54 | 49.62 | 35.44 | 8.36 | 40.18 | 50.63 | +| E5-V | 8.4B | 52.41 | 27.36 | 46.56 | 41.22 | 47.95 | 54.13 | 32.9 | 23.17 | 7.23 | 42.48 | +| **GME-Qwen2VL-2B** | 2.2B | 55.93 | 29.86 | 57.36 | 87.84 | **61.93** | 76.47 | 64.58 | 37.02 | 66.47 | 64.45 | +| **GME-Qwen2VL-7B** | 8.3B | **58.19** | 31.89 | **61.35** | **89.92** | 60.83 | **80.94** | **66.18** | **42.56** | **73.62** | **67.02** | + +The [MTEB Leaderboard](https://huggingface.co/spaces/mteb/leaderboard) English tab shows the text embeddings performence of our model. + +**More detailed experimental results can be found in the [paper](https://arxiv.org/pdf/2412.xxxxx)**. + + +## Limitations + +- **Single Image Input**: In `Qwen2-VL`, an image could be converted into a very large number of visual tokens. We limit the number of visual tokens to 1024 to obtain a good training efficiency. +Due to the lack of relevant data, our models and evaluations retain one single image. +- **English-only Training**: Our models are trained on english data only. Although the `Qwen2-VL` models are multilingual, the multilingual-multimodal embedding performance are not guaranteed. + +We will extend to multi-image input, image-text interleaved data as well as multilingual data in the future version. + + +## Redistribution and Use + +We welcome and appreciate various applications of GME models and further improvements to the GME models themselves. +Following Llama license, +1. if you distribute or make available the GME models (or any derivative works thereof), +or a product or service (including another AI model) that contains any of them, +you shall prominently display “Built with GME” on a related website, user interface, blogpost, about page, or product documentation; +2. if you use the GME models or any outputs or results of them to create, train, fine tune, or otherwise improve an AI model, +which is distributed or made available, you shall also include “GME” at the beginning of any such AI model name. + + +## Cloud API Services + +In addition to the open-source [GME](https://huggingface.co/collections/Alibaba-NLP/gme-models) series models, GME series models are also available as commercial API services on Alibaba Cloud. + +- [MultiModal Embedding Models](https://help.aliyun.com/zh/model-studio/developer-reference/general-text-embedding/): The `multimodal-embedding-v1` model service is available. + +Note that the models behind the commercial APIs are not entirely identical to the open-source models. + + +## Citation +If you find our paper or models helpful, please consider cite: + +``` +@misc{zhang2024gme, + title={GME: Improving Universal Multimodal Retrieval by Multimodal LLMs}, + author={Zhang, Xin and Zhang, Yanzhao and Xie, Wen and Li, Mingxin and Dai, Ziqi and Long, Dingkun and Xie, Pengjun and Zhang, Meishan and Li, Wenjie and Zhang, Min}, + year={2024}, + eprint={2412.xxxxx}, + archivePrefix={arXiv}, + primaryClass={cs.CL}, + url={https://arxiv.org/abs/2412.xxxxx}, +} +```