--- license: mit tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: sentence-compression results: [] --- # sentence-compression This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3054 - Accuracy: 0.8802 - F1: 0.7439 - Precision: 0.7661 - Recall: 0.7229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.317 | 1.0 | 200 | 0.3566 | 0.8513 | 0.6227 | 0.7998 | 0.5099 | | 0.346 | 2.0 | 400 | 0.5853 | 0.7919 | 0.6724 | 0.5413 | 0.8875 | | 0.2365 | 3.0 | 600 | 0.3054 | 0.8802 | 0.7439 | 0.7661 | 0.7229 | ### Framework versions - Transformers 4.12.5 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3