--- library_name: transformers license: apache-2.0 base_model: open-thoughts/OpenThinker-32B tags: - llama-factory - full - generated_from_trainer - mlx - mlx-my-repo datasets: - open-thoughts/open-thoughts-114k model-index: - name: OpenThinker-32B results: [] --- # About: **A fully open-source family of reasoning models built using a dataset derived by distilling DeepSeek-R1.** **This model is a fine-tuned version of **[**__Qwen/Qwen2.5-32B-Instruct__**](https://huggingface.co/Qwen/Qwen2.5-32B-Instruct)** on the **[**__OpenThoughts-114k__**](https://huggingface.co/datasets/open-thoughts/OpenThoughts-114k)** dataset.** *Special thanks to the folks at Open Thoughts for fine-tuning this version of Qwen/Qwen2.5-32B-Instruct. More information about it can be found here:* [https://huggingface.co/open-thoughts/OpenThinker-32B](https://huggingface.co/open-thoughts/OpenThinker-32B) (Base Model) [https://github.com/open-thoughts/open-thoughts](https://github.com/open-thoughts/open-thoughts) (Open Thoughts Git Repo) I simply converted it to MLX format with a quantization of 8-bit for better performance on Apple Silicon Macs. ## Other Types: | Link | Type | Size| Notes | |-------|-----------|-----------|-----------| | [MLX] (https://huggingface.co/AlejandroOlmedo/OpenThinker-32B-8bit-mlx) | 8-bit | 34.80 GB | **Best Quality** | | [MLX] (https://huggingface.co/AlejandroOlmedo/OpenThinker-32B-4bit-mlx) | 4-bit | 18.40 GB | Good Quality| # AlejandroOlmedo/OpenThinker-32B-8bit-mlx The Model [AlejandroOlmedo/OpenThinker-32B-8bit-mlx](https://huggingface.co/AlejandroOlmedo/OpenThinker-32B-8bit-mlx) was converted to MLX format from [open-thoughts/OpenThinker-32B](https://huggingface.co/open-thoughts/OpenThinker-32B) using mlx-lm version **0.20.5**. ## Use with mlx ```bash pip install mlx-lm ``` ```python from mlx_lm import load, generate model, tokenizer = load("AlejandroOlmedo/OpenThinker-32B-8bit-mlx") prompt="hello" if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) response = generate(model, tokenizer, prompt=prompt, verbose=True) ```