--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9391471552991743 - name: Recall type: recall value: 0.9724190431574633 - name: F1 type: f1 value: 0.9554935412411175 - name: Accuracy type: accuracy value: 0.9793838188053188 --- # xlm-roberta-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0847 - Precision: 0.9391 - Recall: 0.9724 - F1: 0.9555 - Accuracy: 0.9794 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 306 | 0.1266 | 0.9112 | 0.9321 | 0.9215 | 0.9664 | | 0.4341 | 2.0 | 612 | 0.0979 | 0.9275 | 0.9662 | 0.9465 | 0.9739 | | 0.4341 | 3.0 | 918 | 0.0868 | 0.9379 | 0.9690 | 0.9532 | 0.9775 | | 0.0949 | 4.0 | 1224 | 0.0834 | 0.9396 | 0.9719 | 0.9555 | 0.9791 | | 0.07 | 5.0 | 1530 | 0.0847 | 0.9391 | 0.9724 | 0.9555 | 0.9794 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3