--- library_name: transformers license: mit base_model: xlm-roberta-base tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: xlm-roberta-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.937991068905093 - name: Recall type: recall value: 0.9717163436200738 - name: F1 type: f1 value: 0.9545559134836631 - name: Accuracy type: accuracy value: 0.9784621223416512 --- # xlm-roberta-finetuned-ner This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.0853 - Precision: 0.9380 - Recall: 0.9717 - F1: 0.9546 - Accuracy: 0.9785 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 306 | 0.1343 | 0.9035 | 0.9289 | 0.9160 | 0.9646 | | 0.4365 | 2.0 | 612 | 0.0985 | 0.9254 | 0.9662 | 0.9453 | 0.9746 | | 0.4365 | 3.0 | 918 | 0.0833 | 0.9413 | 0.9684 | 0.9547 | 0.9788 | | 0.0949 | 4.0 | 1224 | 0.0853 | 0.9380 | 0.9717 | 0.9546 | 0.9785 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3