--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 model-index: - name: Rice-Plant-50-Epochs-Model results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9688473520249221 - name: F1 type: f1 value: 0.9686087085518211 --- # Rice-Plant-50-Epochs-Model This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.1649 - Accuracy: 0.9688 - F1: 0.9686 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 1.0399 | 1.0 | 115 | 0.6185 | 0.8910 | 0.8933 | | 0.3392 | 2.0 | 230 | 0.2849 | 0.9502 | 0.9497 | | 0.1633 | 3.0 | 345 | 0.2230 | 0.9439 | 0.9440 | | 0.104 | 4.0 | 460 | 0.2022 | 0.9502 | 0.9495 | | 0.0828 | 5.0 | 575 | 0.2081 | 0.9408 | 0.9406 | | 0.0603 | 6.0 | 690 | 0.2301 | 0.9408 | 0.9403 | | 0.0513 | 7.0 | 805 | 0.1704 | 0.9595 | 0.9593 | | 0.042 | 8.0 | 920 | 0.1587 | 0.9626 | 0.9626 | | 0.0356 | 9.0 | 1035 | 0.1606 | 0.9626 | 0.9625 | | 0.0299 | 10.0 | 1150 | 0.1608 | 0.9657 | 0.9656 | | 0.0262 | 11.0 | 1265 | 0.1553 | 0.9626 | 0.9625 | | 0.0232 | 12.0 | 1380 | 0.1582 | 0.9657 | 0.9656 | | 0.0207 | 13.0 | 1495 | 0.1588 | 0.9657 | 0.9656 | | 0.0186 | 14.0 | 1610 | 0.1618 | 0.9657 | 0.9656 | | 0.0168 | 15.0 | 1725 | 0.1618 | 0.9657 | 0.9656 | | 0.0152 | 16.0 | 1840 | 0.1639 | 0.9657 | 0.9656 | | 0.0139 | 17.0 | 1955 | 0.1649 | 0.9688 | 0.9686 | | 0.0127 | 18.0 | 2070 | 0.1676 | 0.9657 | 0.9656 | | 0.0117 | 19.0 | 2185 | 0.1688 | 0.9688 | 0.9686 | | 0.0108 | 20.0 | 2300 | 0.1710 | 0.9626 | 0.9622 | | 0.01 | 21.0 | 2415 | 0.1723 | 0.9657 | 0.9654 | | 0.0093 | 22.0 | 2530 | 0.1739 | 0.9657 | 0.9654 | | 0.0087 | 23.0 | 2645 | 0.1758 | 0.9626 | 0.9622 | | 0.0081 | 24.0 | 2760 | 0.1776 | 0.9626 | 0.9622 | | 0.0076 | 25.0 | 2875 | 0.1777 | 0.9657 | 0.9654 | | 0.0071 | 26.0 | 2990 | 0.1792 | 0.9657 | 0.9654 | | 0.0067 | 27.0 | 3105 | 0.1808 | 0.9657 | 0.9654 | | 0.0063 | 28.0 | 3220 | 0.1822 | 0.9657 | 0.9654 | | 0.006 | 29.0 | 3335 | 0.1834 | 0.9657 | 0.9654 | | 0.0057 | 30.0 | 3450 | 0.1840 | 0.9657 | 0.9654 | | 0.0054 | 31.0 | 3565 | 0.1855 | 0.9657 | 0.9654 | | 0.0051 | 32.0 | 3680 | 0.1868 | 0.9657 | 0.9654 | | 0.0049 | 33.0 | 3795 | 0.1877 | 0.9657 | 0.9654 | | 0.0047 | 34.0 | 3910 | 0.1892 | 0.9657 | 0.9654 | | 0.0045 | 35.0 | 4025 | 0.1900 | 0.9657 | 0.9654 | | 0.0043 | 36.0 | 4140 | 0.1914 | 0.9657 | 0.9654 | | 0.0042 | 37.0 | 4255 | 0.1919 | 0.9657 | 0.9654 | | 0.004 | 38.0 | 4370 | 0.1929 | 0.9657 | 0.9654 | | 0.0039 | 39.0 | 4485 | 0.1938 | 0.9657 | 0.9654 | | 0.0037 | 40.0 | 4600 | 0.1953 | 0.9657 | 0.9654 | | 0.0036 | 41.0 | 4715 | 0.1956 | 0.9657 | 0.9654 | | 0.0035 | 42.0 | 4830 | 0.1965 | 0.9657 | 0.9654 | | 0.0035 | 43.0 | 4945 | 0.1974 | 0.9657 | 0.9654 | | 0.0034 | 44.0 | 5060 | 0.1981 | 0.9657 | 0.9654 | | 0.0033 | 45.0 | 5175 | 0.1984 | 0.9657 | 0.9654 | | 0.0032 | 46.0 | 5290 | 0.1986 | 0.9657 | 0.9654 | | 0.0032 | 47.0 | 5405 | 0.1989 | 0.9657 | 0.9654 | | 0.0032 | 48.0 | 5520 | 0.1993 | 0.9657 | 0.9654 | | 0.0031 | 49.0 | 5635 | 0.1993 | 0.9657 | 0.9654 | | 0.0031 | 50.0 | 5750 | 0.1993 | 0.9657 | 0.9654 | ### Framework versions - Transformers 4.35.0 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1