--- license: afl-3.0 --- --- About : This model can be used for text summarization. The dataset on which it was fine tuned consisted of 10,323 articles. The Data Fields : - "Headline" : title of the article - "articleBody" : the main article content - "source" : the link to the readmore page. The data splits were : - Train : 8258. - Vaildation : 2065. ### How to use along with pipeline ```python from transformers import pipeline from transformers import AutoTokenizer, AutoModelForSeq2Seq tokenizer = AutoTokenizer.from_pretrained("AkashKhamkar/InSumT510k") model = AutoModelForSeq2SeqLM.from_pretrained("AkashKhamkar/InSumT510k") summarizer = pipeline("summarization", model=model, tokenizer=tokenizer) summarizer("Text for summarization...", min_length=5, max_length=50) ``` language: - English library_name: Pytorch tags: - Summarization - T5-base - Conditional Modelling -