import torch.nn as nn import torch class LeNNon(nn.Module): def __init__(self): """ Define a CNN architecture used for image classification. This class defines the LeNNon architecture as a PyTorch module """ super(LeNNon, self).__init__() self.conv1 = nn.Conv2d(3, 16, kernel_size=3, stride=1, padding=1) self.pool = nn.MaxPool2d(kernel_size=2, stride=2) self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1) self.fc1 = nn.Linear(32 * 25 * 25, 128) self.fc2 = nn.Linear(128, 10) def forward(self, x): """ Perform a forward pass through the LeNNon architecture. This method applies the convolutional layers, max pooling layers, and fully connected layers to the input tensor x. Parameters: ----------- x (torch.Tensor): The input tensor. Returns: -------- torch.Tensor: The output tensor. """ x = self.pool(torch.relu(self.conv1(x))) x = self.pool(torch.relu(self.conv2(x))) x = x.view(-1, 32 * 25 * 25) x = torch.relu(self.fc1(x)) x = self.fc2(x) return x