--- library_name: peft license: apache-2.0 base_model: mistralai/Mistral-7B-v0.1 tags: - axolotl - generated_from_trainer datasets: - mhenrichsen/alpaca_2k_test model-index: - name: Mistral-QLoRA-Test results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml base_model: mistralai/Mistral-7B-v0.1 # optionally might have model_type or tokenizer_type model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer # Automatically upload checkpoint and final model to HF hub_model_id: AiAF/Mistral-QLoRA-Test load_in_8bit: false load_in_4bit: true strict: false datasets: - path: mhenrichsen/alpaca_2k_test type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ./outputs/qlora-out adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true pad_to_sequence_len: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: "LLM_QLoRA-Pretraining-Practice" wandb_entity: wandb_watch: "all" wandb_name: "Mistral-QLoRA-Test-V1.0" wandb_log_model: "false" gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 1 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0001 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# Mistral-QLoRA-Test This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the mhenrichsen/alpaca_2k_test dataset. It achieves the following results on the evaluation set: - Loss: 0.8640 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.8459 | 0.0417 | 1 | 0.9399 | | 0.9812 | 0.25 | 6 | 0.9012 | | 0.8706 | 0.5 | 12 | 0.8773 | | 0.8565 | 0.75 | 18 | 0.8659 | | 0.8565 | 1.0 | 24 | 0.8640 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0