[sdxl_arguments] cache_text_encoder_outputs = true no_half_vae = true min_timestep = 0 max_timestep = 1000 shuffle_caption = false [model_arguments] pretrained_model_name_or_path = "/content/pretrained_model/sd_xl_base_1.0.safetensors" vae = "/content/vae/sdxl_vae.safetensors" [dataset_arguments] debug_dataset = false in_json = "/content/LoRA/meta_lat.json" train_data_dir = "/content/LoRA/train_data" dataset_repeats = 2 keep_tokens = 0 resolution = "1024,1024" color_aug = false token_warmup_min = 1 token_warmup_step = 0 [training_arguments] output_dir = "/content/LoRA/output" output_name = "Lauren-Aspyn-SDXL" save_precision = "fp16" save_every_n_epochs = 1 train_batch_size = 10 max_token_length = 225 mem_eff_attn = false sdpa = false xformers = true max_train_epochs = 50 max_data_loader_n_workers = 8 persistent_data_loader_workers = true seed = 21 gradient_checkpointing = true gradient_accumulation_steps = 1 mixed_precision = "fp16" [logging_arguments] log_with = "wandb" log_tracker_name = "Lauren-Aspyn-SDXL" logging_dir = "/content/LoRA/logs" [sample_prompt_arguments] sample_every_n_epochs = 1 sample_sampler = "euler_a" [saving_arguments] save_model_as = "safetensors" [optimizer_arguments] optimizer_type = "AdaFactor" learning_rate = 0.001 max_grad_norm = 0 optimizer_args = [ "scale_parameter=False", "relative_step=False", "warmup_init=False",] lr_scheduler = "constant" lr_warmup_steps = 0 [additional_network_arguments] no_metadata = false network_module = "networks.lora" network_dim = 64 network_alpha = 64 network_args = [ "conv_dim=8", "conv_alpha=1",] network_train_unet_only = true [advanced_training_config] multires_noise_iterations = 6 multires_noise_discount = 0.3 min_snr_gamma = 3