--- library_name: transformers license: apache-2.0 base_model: facebook/hubert-base-ls960 tags: - generated_from_trainer metrics: - accuracy model-index: - name: hubert-base-ls960-finetuned-eos_poc5_ge-di-v5 results: [] --- # hubert-base-ls960-finetuned-eos_poc5_ge-di-v5 This model is a fine-tuned version of [facebook/hubert-base-ls960](https://huggingface.co/facebook/hubert-base-ls960) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8936 - Accuracy: 0.6772 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0044 | 1.0 | 302 | 1.0290 | 0.5622 | | 0.7936 | 2.0 | 604 | 1.0197 | 0.5640 | | 0.9923 | 3.0 | 906 | 0.9170 | 0.6122 | | 0.9078 | 4.0 | 1208 | 0.9016 | 0.6160 | | 0.8268 | 5.0 | 1510 | 0.9285 | 0.6345 | | 0.7044 | 6.0 | 1812 | 0.8985 | 0.6494 | | 0.6689 | 7.0 | 2114 | 0.9121 | 0.6549 | | 0.7087 | 8.0 | 2416 | 0.8722 | 0.6735 | | 0.6809 | 9.0 | 2718 | 0.8894 | 0.6735 | | 0.7639 | 10.0 | 3020 | 0.8936 | 0.6772 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0