--- datasets: [] language: [] library_name: sentence-transformers metrics: - cosine_accuracy@1 - cosine_accuracy@3 - cosine_accuracy@5 - cosine_accuracy@10 - cosine_precision@1 - cosine_precision@3 - cosine_precision@5 - cosine_precision@10 - cosine_recall@1 - cosine_recall@3 - cosine_recall@5 - cosine_recall@10 - cosine_ndcg@10 - cosine_mrr@10 - cosine_map@100 pipeline_tag: sentence-similarity tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:14593 - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss widget: - source_sentence: 'Macro ingredients needed to cook Poha: Orange Carrot, French Bean, Fresh Green Pea, Medium Poha, Red Onion, Curry Leaf, Green Chili Pepper' sentences: - Can you list recipes that contain canned chickpea and canned black bean? - What are the leading macro ingredients in Pigeon Pea Curry (Toor Dal)? - What macro ingredients form the base of Poha? - source_sentence: 'I do have some good recommendations for you! Here are few good alternatives to kashmiri pulao: Kashmiri Dum Aloo, Shivani''s Kashmiri Dum Aloo, Chicken Pulao, Chicken Rezala, Chicken Kheema Masala, Hyderabadi Chicken Masala, Masala Khichdi, Lentils and Rice (Dal Chawal), Homestyle Vegetable Pulao' sentences: - What recipes are comparable to kashmiri pulao in flavor profile? - Can you give me step-by-step instructions to cook Hariyali Chicken Curry? - What are some recipes that utilize baking soda and olive oil effectively? - source_sentence: 'Garnishing tip for Yellow Rice: Sprinkle with chopped cilantro.' sentences: - How can I make Yellow Rice look appealing with garnishes? - Describe General Tso's Tofu for me. - What are the best garnishing tips for Paneer Tikka Masala? - source_sentence: 'Recipes that can be made using green chili pepper and grated coconut: Kerala Mix Vegetables (Aviyal), Carrot Poriyal, Cauliflower Poriyal, Beetroot Poriyal, Maithilee''s Fish Curry, Mix Vegetable Poriyal, Ivy Gourd Curry (Tindora Masala), Spiced Indian Moth Beans (Matki Usal), Fish Curry, Andhra Garlic Chicken' sentences: - What are the culinary uses of ground pork and chayote? - What are the dishes prepared using green cardamom and clove? - Can you suggest recipes that include green chili pepper and grated coconut? - source_sentence: 'Recipes that can be made using red onion and paprika: Breakfast Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac & Cheese, Tomato Chicken Curry' sentences: - Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)? - What recipes incorporate black pepper and habanero chili in their ingredients? - What are some ways to use red onion and paprika in recipes? model-index: - name: SentenceTransformer results: - task: type: information-retrieval name: Information Retrieval dataset: name: dim 384 type: dim_384 metrics: - type: cosine_accuracy@1 value: 0.9704069050554871 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9926017262638718 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.998766954377312 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9993834771886559 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9704069050554871 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.33086724208795726 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1997533908754624 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09993834771886559 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9704069050554871 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9926017262638718 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.998766954377312 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9993834771886559 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9865445143406266 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9822089131583582 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9822089131583582 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 256 type: dim_256 metrics: - type: cosine_accuracy@1 value: 0.9728729963008631 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9932182490752158 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.998766954377312 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9993834771886559 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9728729963008631 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3310727496917386 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.1997533908754624 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09993834771886559 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9728729963008631 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9932182490752158 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.998766954377312 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9993834771886559 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9875922381599775 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9836107685984382 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9836107685984381 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 128 type: dim_128 metrics: - type: cosine_accuracy@1 value: 0.9722564734895192 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9944512946979038 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9993834771886559 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9993834771886559 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9722564734895192 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.33148376489930126 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19987669543773118 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09993834771886559 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9722564734895192 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9944512946979038 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9993834771886559 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9993834771886559 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9873346466071089 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9832511302918208 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9832511302918209 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 64 type: dim_64 metrics: - type: cosine_accuracy@1 value: 0.9704069050554871 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9944512946979038 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9993834771886559 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9993834771886559 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.9704069050554871 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.33148376489930126 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19987669543773118 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09993834771886559 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.9704069050554871 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9944512946979038 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9993834771886559 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9993834771886559 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9867057287670639 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9823982737361283 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9823982737361281 name: Cosine Map@100 - task: type: information-retrieval name: Information Retrieval dataset: name: dim 32 type: dim_32 metrics: - type: cosine_accuracy@1 value: 0.971023427866831 name: Cosine Accuracy@1 - type: cosine_accuracy@3 value: 0.9950678175092479 name: Cosine Accuracy@3 - type: cosine_accuracy@5 value: 0.9993834771886559 name: Cosine Accuracy@5 - type: cosine_accuracy@10 value: 0.9993834771886559 name: Cosine Accuracy@10 - type: cosine_precision@1 value: 0.971023427866831 name: Cosine Precision@1 - type: cosine_precision@3 value: 0.3316892725030826 name: Cosine Precision@3 - type: cosine_precision@5 value: 0.19987669543773118 name: Cosine Precision@5 - type: cosine_precision@10 value: 0.09993834771886559 name: Cosine Precision@10 - type: cosine_recall@1 value: 0.971023427866831 name: Cosine Recall@1 - type: cosine_recall@3 value: 0.9950678175092479 name: Cosine Recall@3 - type: cosine_recall@5 value: 0.9993834771886559 name: Cosine Recall@5 - type: cosine_recall@10 value: 0.9993834771886559 name: Cosine Recall@10 - type: cosine_ndcg@10 value: 0.9872988931953259 name: Cosine Ndcg@10 - type: cosine_mrr@10 value: 0.9831689272503082 name: Cosine Mrr@10 - type: cosine_map@100 value: 0.9831689272503081 name: Cosine Map@100 --- # SentenceTransformer This is a [sentence-transformers](https://www.SBERT.net) model trained. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 384 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) (2): Normalize() ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("Adi-0-0-Gupta/Embedding-v1") # Run inference sentences = [ 'Recipes that can be made using red onion and paprika: Breakfast Potatoes with Sausage, Peri Peri Chicken Pasta, Scrambled Egg Curry, Chili Mac & Cheese, Tomato Chicken Curry', 'What are some ways to use red onion and paprika in recipes?', 'Are there dishes that closely resemble spiced potatoes & fenugreek (aloo methi)?', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 384] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Information Retrieval * Dataset: `dim_384` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9704 | | cosine_accuracy@3 | 0.9926 | | cosine_accuracy@5 | 0.9988 | | cosine_accuracy@10 | 0.9994 | | cosine_precision@1 | 0.9704 | | cosine_precision@3 | 0.3309 | | cosine_precision@5 | 0.1998 | | cosine_precision@10 | 0.0999 | | cosine_recall@1 | 0.9704 | | cosine_recall@3 | 0.9926 | | cosine_recall@5 | 0.9988 | | cosine_recall@10 | 0.9994 | | cosine_ndcg@10 | 0.9865 | | cosine_mrr@10 | 0.9822 | | **cosine_map@100** | **0.9822** | #### Information Retrieval * Dataset: `dim_256` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9729 | | cosine_accuracy@3 | 0.9932 | | cosine_accuracy@5 | 0.9988 | | cosine_accuracy@10 | 0.9994 | | cosine_precision@1 | 0.9729 | | cosine_precision@3 | 0.3311 | | cosine_precision@5 | 0.1998 | | cosine_precision@10 | 0.0999 | | cosine_recall@1 | 0.9729 | | cosine_recall@3 | 0.9932 | | cosine_recall@5 | 0.9988 | | cosine_recall@10 | 0.9994 | | cosine_ndcg@10 | 0.9876 | | cosine_mrr@10 | 0.9836 | | **cosine_map@100** | **0.9836** | #### Information Retrieval * Dataset: `dim_128` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9723 | | cosine_accuracy@3 | 0.9945 | | cosine_accuracy@5 | 0.9994 | | cosine_accuracy@10 | 0.9994 | | cosine_precision@1 | 0.9723 | | cosine_precision@3 | 0.3315 | | cosine_precision@5 | 0.1999 | | cosine_precision@10 | 0.0999 | | cosine_recall@1 | 0.9723 | | cosine_recall@3 | 0.9945 | | cosine_recall@5 | 0.9994 | | cosine_recall@10 | 0.9994 | | cosine_ndcg@10 | 0.9873 | | cosine_mrr@10 | 0.9833 | | **cosine_map@100** | **0.9833** | #### Information Retrieval * Dataset: `dim_64` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.9704 | | cosine_accuracy@3 | 0.9945 | | cosine_accuracy@5 | 0.9994 | | cosine_accuracy@10 | 0.9994 | | cosine_precision@1 | 0.9704 | | cosine_precision@3 | 0.3315 | | cosine_precision@5 | 0.1999 | | cosine_precision@10 | 0.0999 | | cosine_recall@1 | 0.9704 | | cosine_recall@3 | 0.9945 | | cosine_recall@5 | 0.9994 | | cosine_recall@10 | 0.9994 | | cosine_ndcg@10 | 0.9867 | | cosine_mrr@10 | 0.9824 | | **cosine_map@100** | **0.9824** | #### Information Retrieval * Dataset: `dim_32` * Evaluated with [InformationRetrievalEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator) | Metric | Value | |:--------------------|:-----------| | cosine_accuracy@1 | 0.971 | | cosine_accuracy@3 | 0.9951 | | cosine_accuracy@5 | 0.9994 | | cosine_accuracy@10 | 0.9994 | | cosine_precision@1 | 0.971 | | cosine_precision@3 | 0.3317 | | cosine_precision@5 | 0.1999 | | cosine_precision@10 | 0.0999 | | cosine_recall@1 | 0.971 | | cosine_recall@3 | 0.9951 | | cosine_recall@5 | 0.9994 | | cosine_recall@10 | 0.9994 | | cosine_ndcg@10 | 0.9873 | | cosine_mrr@10 | 0.9832 | | **cosine_map@100** | **0.9832** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 14,593 training samples * Columns: positive and anchor * Approximate statistics based on the first 1000 samples: | | positive | anchor | |:--------|:------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | positive | anchor | |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | Calories information of Hyderabadi Chicken Masala, based on different serving sizes: Serving 1 - 345 calories, Serving 2 - 580 calories, Serving 3 - 1220 calories, Serving 4 - 1450 calories | What’s the calorie content of Hyderabadi Chicken Masala? | | Recipes that can be made using dried herb mix and onion powder: Chorizo Queso Soup, Cheesy Chicken & Broccoli | What are some food items made using dried herb mix and onion powder? | | Recipes that can be made using roasted semolina/bombay rava and saffron: Rashmi's Kesari Bath, Pineapple Kesari Bath | What recipes have roasted semolina/bombay rava and saffron in them? | * Loss: [MatryoshkaLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters: ```json { "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 384, 256, 128, 64, 32 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: epoch - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `gradient_accumulation_steps`: 16 - `learning_rate`: 1e-05 - `num_train_epochs`: 20 - `lr_scheduler_type`: cosine - `warmup_ratio`: 0.1 - `bf16`: True - `tf32`: True - `load_best_model_at_end`: True - `optim`: adamw_torch_fused - `batch_sampler`: no_duplicates #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: epoch - `prediction_loss_only`: True - `per_device_train_batch_size`: 32 - `per_device_eval_batch_size`: 32 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 16 - `eval_accumulation_steps`: None - `learning_rate`: 1e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1.0 - `num_train_epochs`: 20 - `max_steps`: -1 - `lr_scheduler_type`: cosine - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.1 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: True - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: True - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: True - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch_fused - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `batch_sampler`: no_duplicates - `multi_dataset_batch_sampler`: proportional
### Training Logs | Epoch | Step | Training Loss | dim_128_cosine_map@100 | dim_256_cosine_map@100 | dim_32_cosine_map@100 | dim_384_cosine_map@100 | dim_64_cosine_map@100 | |:-------:|:----:|:-------------:|:----------------------:|:----------------------:|:---------------------:|:----------------------:|:---------------------:| | 0.3501 | 10 | 0.0066 | - | - | - | - | - | | 0.7002 | 20 | 0.0056 | - | - | - | - | - | | 0.9803 | 28 | - | 0.9746 | 0.9771 | 0.9776 | 0.9758 | 0.9763 | | 1.0503 | 30 | 0.0057 | - | - | - | - | - | | 1.4004 | 40 | 0.0048 | - | - | - | - | - | | 1.7505 | 50 | 0.0039 | - | - | - | - | - | | 1.9956 | 57 | - | 0.9783 | 0.9787 | 0.9815 | 0.9788 | 0.9793 | | 2.1007 | 60 | 0.0046 | - | - | - | - | - | | 2.4508 | 70 | 0.0035 | - | - | - | - | - | | 2.8009 | 80 | 0.0028 | - | - | - | - | - | | 2.9759 | 85 | - | 0.9818 | 0.9811 | 0.9836 | 0.9803 | 0.9823 | | 3.1510 | 90 | 0.0036 | - | - | - | - | - | | 3.5011 | 100 | 0.0033 | - | - | - | - | - | | 3.8512 | 110 | 0.0026 | - | - | - | - | - | | 3.9912 | 114 | - | 0.9814 | 0.9818 | 0.9844 | 0.9814 | 0.9821 | | 4.2013 | 120 | 0.0025 | - | - | - | - | - | | 4.5514 | 130 | 0.003 | - | - | - | - | - | | 4.9015 | 140 | 0.0027 | - | - | - | - | - | | 4.9716 | 142 | - | 0.9825 | 0.9819 | 0.9844 | 0.9823 | 0.9825 | | 5.2516 | 150 | 0.0024 | - | - | - | - | - | | 5.6018 | 160 | 0.0023 | - | - | - | - | - | | 5.9519 | 170 | 0.0024 | - | - | - | - | - | | 5.9869 | 171 | - | 0.9831 | 0.9826 | 0.9846 | 0.9818 | 0.9831 | | 6.3020 | 180 | 0.0025 | - | - | - | - | - | | 6.6521 | 190 | 0.0025 | - | - | - | - | - | | 6.9672 | 199 | - | 0.9830 | 0.9825 | 0.9844 | 0.9823 | 0.9831 | | 7.0022 | 200 | 0.0019 | - | - | - | - | - | | 7.3523 | 210 | 0.0022 | - | - | - | - | - | | 7.7024 | 220 | 0.0026 | - | - | - | - | - | | 7.9825 | 228 | - | 0.9828 | 0.9825 | 0.9836 | 0.9821 | 0.9821 | | 8.0525 | 230 | 0.0022 | - | - | - | - | - | | 8.4026 | 240 | 0.0021 | - | - | - | - | - | | 8.7527 | 250 | 0.0021 | - | - | - | - | - | | 8.9978 | 257 | - | 0.9827 | 0.9826 | 0.9848 | 0.9827 | 0.9827 | | 9.1028 | 260 | 0.0025 | - | - | - | - | - | | 9.4530 | 270 | 0.0022 | - | - | - | - | - | | 9.8031 | 280 | 0.0019 | - | - | - | - | - | | 9.9781 | 285 | - | 0.9832 | 0.9833 | 0.9858 | 0.9825 | 0.9834 | | 10.1532 | 290 | 0.0021 | - | - | - | - | - | | 10.5033 | 300 | 0.0019 | - | - | - | - | - | | 10.8534 | 310 | 0.0024 | - | - | - | - | - | | 10.9934 | 314 | - | 0.9830 | 0.9827 | 0.9850 | 0.9825 | 0.9829 | | 11.2035 | 320 | 0.0017 | - | - | - | - | - | | 11.5536 | 330 | 0.0017 | - | - | - | - | - | | 11.9037 | 340 | 0.0018 | - | - | - | - | - | | 11.9737 | 342 | - | 0.9827 | 0.9835 | 0.9841 | 0.9826 | 0.9827 | | 12.2538 | 350 | 0.0018 | - | - | - | - | - | | 12.6039 | 360 | 0.0018 | - | - | - | - | - | | 12.9540 | 370 | 0.0023 | - | - | - | - | - | | 12.9891 | 371 | - | 0.9828 | 0.9834 | 0.9832 | 0.9826 | 0.9823 | | 13.3042 | 380 | 0.0017 | - | - | - | - | - | | 13.6543 | 390 | 0.0018 | - | - | - | - | - | | 13.9694 | 399 | - | 0.9830 | 0.9831 | 0.9838 | 0.9820 | 0.9826 | | 14.0044 | 400 | 0.0016 | - | - | - | - | - | | 14.3545 | 410 | 0.0018 | - | - | - | - | - | | 14.7046 | 420 | 0.0018 | - | - | - | - | - | | 14.9847 | 428 | - | 0.9827 | 0.9825 | 0.9832 | 0.9816 | 0.9826 | | 15.0547 | 430 | 0.0018 | - | - | - | - | - | | 15.4048 | 440 | 0.0015 | - | - | - | - | - | | 15.7549 | 450 | 0.0017 | - | - | - | - | - | | 16.0 | 457 | - | 0.9833 | 0.9836 | 0.9832 | 0.9822 | 0.9824 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.0.1 - Transformers: 4.41.2 - PyTorch: 2.1.2+cu121 - Accelerate: 0.31.0 - Datasets: 2.19.1 - Tokenizers: 0.19.1 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```