--- license: mit library_name: peft tags: - axolotl - generated_from_trainer base_model: microsoft/phi-1_5 model-index: - name: test_upload results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adam_beta2: 0.95 adam_epsilon: 1.0e-05 adapter: qlora base_model: microsoft/phi-1_5 dataset_prepared_path: null datasets: - path: garage-bAInd/Open-Platypus type: alpaca debug: null deepspeed: null early_stopping_patience: null evals_per_epoch: 1 flash_attention: true fsdp: null fsdp_config: null gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true hub_model_id: AdamRTomkins/test_upload hub_strategy: end learning_rate: 3.0e-06 load_in_4bit: true load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 64 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 2 micro_batch_size: 1 model_type: AutoModelForCausalLM num_epochs: 1 optimizer: adamw_torch output_dir: ./outputs/phi-sft-out pad_to_sequence_len: true resize_token_embeddings_to_32x: true resume_from_checkpoint: null sample_packing: true saves_per_epoch: 1 sequence_len: 1024 special_tokens: pad_token: <|endoftext|> strict: false tokenizer_type: AutoTokenizer val_set_size: 0.05 wandb_entity: null wandb_log_model: null wandb_name: null wandb_project: null wandb_watch: null warmup_steps: 100 weight_decay: 0.1 xformers_attention: null ```

# test_upload This model is a fine-tuned version of [microsoft/phi-1_5](https://huggingface.co/microsoft/phi-1_5) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.3469 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-06 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - optimizer: Adam with betas=(0.9,0.95) and epsilon=1e-05 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - training_steps: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.6676 | 0.0002 | 2 | 1.3469 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.1.2+cu118 - Datasets 2.19.1 - Tokenizers 0.19.1