--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-large tags: - generated_from_trainer metrics: - f1 model-index: - name: ModernBERT-large-llm-router results: [] datasets: - DevQuasar/llm_router_dataset-synth pipeline_tag: text-classification --- # ModernBERT-large-llm-router This model is a fine-tuned version of [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) on [DevQuasar/llm_router_dataset-synth](https://huggingface.co/datasets/DevQuasar/llm_router_dataset-synth). It achieves the following results on the test set: - Loss: 0.0536 - F1: 0.9933 ## Model description See original [answerdotai/ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) model card for additional information. This model is intended to classify queries for LLM routing. More advanced queries get labeled 1 for large_llm and simpler queries get 0 for small_llm. ## Training procedure Annotated training procedure available [in this notebook.](https://colab.research.google.com/drive/1G7oHp_8R4fmOSpjwaNB_T2NUJsmMh4Kw?usp=sharing) Methodology and code credits to [Phillip Schmid](https://huggingface.co/philschmid) from his [Fine-tune classifier with ModernBERT in 2025 ](https://www.philschmid.de/fine-tune-modern-bert-in-2025) blog post. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | |:-------------:|:-----:|:----:|:---------------:|:------:| | 0.0303 | 1.0 | 479 | 0.0317 | 0.9881 | | 0.014 | 2.0 | 958 | 0.0374 | 0.9927 | | 0.0044 | 3.0 | 1437 | 0.0502 | 0.9921 | | 0.0004 | 4.0 | 1916 | 0.0554 | 0.9927 | | 0.0003 | 5.0 | 2395 | 0.0536 | 0.9933 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.21.0