--- metrics: - accuracy pipeline_tag: image-classification base_model: vit-base-patch16-384 model-index: - name: vit-base-nsfw-detector results: - task: type: image-classification name: Image Classification metrics: - type: accuracy value: 0.9654 name: Accuracy - type: AUC value: 0.9948 - type: loss value: 0.0937 name: Loss --- # vit-base-nsfw-detector This model is a fine-tuned version of [vit-base-patch16-384](https://huggingface.co/google/vit-base-patch16-384) on around 25_000 images (drawings, photos...). It achieves the following results on the evaluation set: - Loss: 0.0937 - Accuracy: 0.9654 ## Model description The Vision Transformer (ViT) is a transformer encoder model (BERT-like) pretrained on a large collection of images in a supervised fashion, namely ImageNet-21k, at a resolution of 224x224 pixels. Next, the model was fine-tuned on ImageNet (also referred to as ILSVRC2012), a dataset comprising 1 million images and 1,000 classes, at a higher resolution of 384x384. ## Intended uses & limitations There are two classes: SFW and NSFW. The model has been trained to be restrictive and therefore classify "sexy" images as NSFW. That is, if the image shows cleavage or too much skin, it will be classified as NSFW. This is normal. Usage for a local image: ```python from transformers import pipeline from PIL import Image img = Image.open("") predict = pipeline("image-classification", model="AdamCodd/vit-base-nsfw-detector") predict(img) ``` Usage for a distant image: ```python from transformers import ViTImageProcessor, AutoModelForImageClassification from PIL import Image import requests url = 'http://images.cocodataset.org/val2017/000000039769.jpg' image = Image.open(requests.get(url, stream=True).raw) processor = ViTImageProcessor.from_pretrained('AdamCodd/vit-base-nsfw-detector') model = AutoModelForImageClassification.from_pretrained('AdamCodd/vit-base-nsfw-detector') inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx]) # Predicted class: sfw ``` The model has been trained on a variety of images (realistic, 3D, drawings), yet it is not perfect and some images may be wrongly classified as NSFW when they are not. ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - num_epochs: 1 ### Training results - Validation Loss: 0.0937 - Accuracy: 0.9654, - AUC: 0.9948 Confusion Matrix (eval): [1076 37] [ 60 1627] ### Framework versions - Transformers 4.36.2 - Evaluate 0.4.1 If you want to support me, you can [here](https://ko-fi.com/adamcodd).