--- base_model: - concedo/KobbleTinyV2-1.1B library_name: transformers tags: - mergekit - merge --- # This is the GGUF variant! The Original Model is [here](https://huggingface.co/Aculi/Tinyllama-2B) Try this Model in Q8 on my homepage [here](https://home.acu.li/) # Tinyllama-2B This is a merge and a finetune to create a small, but very useable Model, and i have to say, its very good. ## Basic Question: download.png ## Prompt Template Tinyllama-2B uses Alpaca: ``` ### Instruction: {prompt} ### Response: ``` ### Merge Info: This is a frankenmerge of: [concedo/KobbleTinyV2-1.1B](https://huggingface.co/concedo/KobbleTinyV2-1.1B) The following YAML configuration was used to produce this model: ```yaml dtype: bfloat16 merge_method: passthrough slices: - sources: - layer_range: [0, 16] model: concedo/KobbleTinyV2-1.1B - sources: - layer_range: [5, 16] model: concedo/KobbleTinyV2-1.1B parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [5, 16] model: concedo/KobbleTinyV2-1.1B parameters: scale: - filter: o_proj value: 0.0 - filter: down_proj value: 0.0 - value: 1.0 - sources: - layer_range: [16, 22] model: concedo/KobbleTinyV2-1.1B ``` ## Finetune Info: The following YAML configuration was used to finetune this model: ```yaml base_model: Fischerboot/2b-tiny-llama-alpaca-instr model_type: LlamaForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: false load_in_4bit: true strict: false datasets: - path: Fischerboot/freedom-rp-alpaca-shortend type: alpaca - path: diffnamehard/toxic-dpo-v0.1-NoWarning-alpaca type: alpaca - path: Fischerboot/alpaca-undensored-fixed-50k type: alpaca - path: Fischerboot/DAN-alpaca type: alpaca - path: Fischerboot/rp-alpaca-next-oone type: alpaca dataset_prepared_path: val_set_size: 0.05 output_dir: ./outputs/24r adapter: qlora lora_model_dir: sequence_len: 2048 sample_packing: true eval_sample_packing: false pad_to_sequence_len: true lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: paged_adamw_32bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: true flash_attention: true warmup_steps: 10 evals_per_epoch: 2 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ``` ### Training results: | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.7881 | 0.0017 | 1 | 2.5329 | | 1.6899 | 0.4996 | 287 | 1.9272 | | 1.5511 | 0.9991 | 574 | 1.8750 | | 1.4797 | 1.4861 | 861 | 1.8476 | | 1.5279 | 1.9856 | 1148 | 1.8270 | | 1.4583 | 2.4726 | 1435 | 1.8275 | | 1.5044 | 2.9721 | 1722 | 1.8215 | | 1.3051 | 3.4582 | 2009 | 1.8243 | | 1.5619 | 3.9578 | 2296 | 1.8245 |