File size: 10,667 Bytes
4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 c44944d 4403157 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 |
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
from transformers import AdamWeightDecay
import tensorflow as tf
import random
from transformers import logging as hf_logging
from tensorflow.keras.preprocessing.sequence import pad_sequences
from sklearn.model_selection import train_test_split
import numpy as np
import textwrap
import argparse
import re
import warnings
import os
warnings.filterwarnings("ignore")
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
hf_logging.set_verbosity_error()
np.random.seed(1234)
tf.random.set_seed(1234)
random.seed(1234)
def create_arg_parser():
'''Creating command line arguments'''
parser = argparse.ArgumentParser()
parser.add_argument("-tf", "--transformer", default="google/byt5-small",
type=str, help="this argument takes the pretrained "
"language model URL from HuggingFace "
"default is ByT5-small, please visit "
"HuggingFace for full URL")
parser.add_argument("-c_model", "--custom_model",
type=str, help="this argument takes a custom "
"pretrained checkpoint")
parser.add_argument("-train", "--train_data", default='training_data10k.txt',
type=str, help="this argument takes the train "
"data file as input")
parser.add_argument("-dev", "--dev_data", default='validation_data.txt',
type=str, help="this argument takes the dev data file "
"as input")
parser.add_argument("-lr", "--learn_rate", default=5e-5, type=float,
help="Set a custom learn rate for "
"the model, default is 5e-5")
parser.add_argument("-bs", "--batch_size", default=8, type=int,
help="Set a custom batch size for "
"the pretrained language model, default is 8")
parser.add_argument("-sl_train", "--sequence_length_train", default=155,
type=int, help="Set a custom maximum sequence length"
"for the pretrained language model,"
"default is 155")
parser.add_argument("-sl_dev", "--sequence_length_dev", default=155,
type=int, help="Set a custom maximum sequence length"
"for the pretrained language model,"
"default is 155")
parser.add_argument("-ep", "--epochs", default=1, type=int,
help="This argument selects the amount of epochs "
"to run the model with, default is 1 epoch")
parser.add_argument("-es", "--early_stop", default="val_loss", type=str,
help="Set the value to monitor for earlystopping")
parser.add_argument("-es_p", "--early_stop_patience", default=2,
type=int, help="Set the patience value for "
"earlystopping, default is 2")
args = parser.parse_args()
return args
def read_data(data_file):
'''Reading in data files'''
with open(data_file) as file:
data = file.readlines()
text = []
for d in data:
text.append(d)
return text
def create_data(data):
'''Splitting Alpino format training data into separate
source and target sentences'''
source_text = []
target_text = []
for x in data:
source = []
target = []
spel = re.findall(r'\[.*?\]', x)
if spel:
for s in spel:
s = s.split()
if s[1] == '@alt':
target.append(''.join(s[2:3]))
source.append(''.join(s[3:-1]))
elif s[1] == '@mwu_alt':
target.append(''.join(s[2:3]))
source.append(''.join(s[3:-1]).replace('-', ''))
elif s[1] == '@mwu':
target.append(''.join(s[2:-1]))
source.append(' '.join(s[2:-1]))
elif s[1] == '@postag':
target.append(''.join(s[-2]))
source.append(''.join(s[-2]))
elif s[1] == '@phantom':
target.append(''.join(s[2]))
source.append('')
target2 = []
for t in target:
if t[0] == '~':
t = t.split('~')
target2.append(t[1])
else:
target2.append(t)
sent = re.sub(r'\[.*?\]', 'EMPTY', x)
word_c = 0
src = []
trg = []
for word in sent.split():
if word == 'EMPTY':
src.append(source[word_c])
trg.append(target2[word_c])
word_c += 1
else:
src.append(word)
trg.append(word)
source_text.append(' '.join(src))
target_text.append(' '.join(trg))
return source_text, target_text
def split_sent(data, max_length):
'''Splitting sentences if longer than given max_length value'''
short_sent = []
long_sent = []
for n in data:
n = n.split('|')
if len(n[1]) <= max_length:
short_sent.append(n[1])
elif len(n[1]) > max_length:
n[1] = re.sub(r'(\s)+(?=[^[]*?\])', '$$', n[1])
n[1] = n[1].replace("] [", "]##[")
lines = textwrap.wrap(n[1], max_length, break_long_words=False)
long_sent.append(lines)
new_data = []
for s in long_sent:
for s1 in s:
s1 = s1.replace(']##[', '] [')
s1 = s1.replace('$$', ' ')
s2 = s1.split()
if len(s2) > 2:
new_data.append(s1)
for x in short_sent:
new_data.append(x)
return new_data
def preprocess_function(tk, s, t):
'''tokenizing text and labels'''
model_inputs = tk(s)
with tk.as_target_tokenizer():
labels = tk(t)
model_inputs["labels"] = labels["input_ids"]
model_inputs["decoder_attention_mask"] = labels["attention_mask"]
return model_inputs
def convert_tok(tok, sl):
'''Convert tokenized object to Tensors and add padding'''
input_ids = []
attention_mask = []
labels = []
decoder_attention_mask = []
for a, b, c, d in zip(tok['input_ids'], tok['attention_mask'], tok['labels'],
tok['decoder_attention_mask']):
input_ids.append(a)
attention_mask.append(b)
labels.append(c)
decoder_attention_mask.append(d)
input_ids_pad = pad_sequences(input_ids, padding='post', maxlen=sl)
attention_mask_pad = pad_sequences(attention_mask, padding='post',
maxlen=sl)
labels_pad = pad_sequences(labels, padding='post', maxlen=sl)
dec_attention_mask_pad = pad_sequences(decoder_attention_mask,
padding='post', maxlen=sl)
return {'input_ids': tf.constant(input_ids_pad), 'attention_mask':
tf.constant(attention_mask_pad), 'labels': tf.constant(labels_pad),
'decoder_attention_mask': tf.constant(dec_attention_mask_pad)}
def train_model(model_name, lr, bs, sl_train, sl_dev, ep, es, es_p, train, dev):
'''Finetune and save a given T5 version with given parameters'''
print('Training model: {}\nWith parameters:\nLearn rate: {}, '
'Batch size: {}\nSequence length train: {}, sequence length dev: {}\n'
'Epochs: {}'.format(model_name, lr, bs, sl_train, sl_dev, ep))
tk = AutoTokenizer.from_pretrained(model_name)
args = create_arg_parser()
source_train, target_train = create_data(train)
source_test, target_test = create_data(dev)
if args.custom_model:
model = TFAutoModelForSeq2SeqLM.from_pretrained(args.custom_model,
from_pt=True)
else:
model = TFAutoModelForSeq2SeqLM.from_pretrained(model_name)
train_tok = preprocess_function(tk, source_train, target_train)
dev_tok = preprocess_function(tk, source_test, target_test)
tf_train = convert_tok(train_tok, sl_train)
tf_dev = convert_tok(dev_tok, sl_dev)
optim = AdamWeightDecay(learning_rate=lr)
model.compile(optimizer=optim, loss=custom_loss,
metrics=[accuracy])
ear_stop = tf.keras.callbacks.EarlyStopping(monitor=es, patience=es_p,
restore_best_weights=True,
mode="auto")
model.fit(tf_train, validation_data=tf_dev, epochs=ep,
batch_size=bs, callbacks=[ear_stop])
model.save_weights('{}_weights.h5'.format(model_name[7:]))
return model
def custom_loss(y_true, y_pred):
'''Custom loss function'''
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=True, reduction='none')
loss = loss_fn(y_true, y_pred)
mask = tf.cast(y_true != 0, loss.dtype)
loss *= mask
return tf.reduce_sum(loss)/tf.reduce_sum(mask)
def accuracy(y_true, y_pred):
'''Custom accuracy function '''
y_pred = tf.argmax(y_pred, axis=-1)
y_pred = tf.cast(y_pred, y_true.dtype)
match = tf.cast(y_true == y_pred, tf.float32)
mask = tf.cast(y_true != 0, tf.float32)
return tf.reduce_sum(match)/tf.reduce_sum(mask)
def main():
args = create_arg_parser()
lr = args.learn_rate
bs = args.batch_size
sl_train = args.sequence_length_train
sl_dev = args.sequence_length_dev
split_length_train = (sl_train - 5)
split_length_dev = (sl_dev - 5)
ep = args.epochs
if args.transformer == 'google/flan-t5-small':
model_name = 'google/flan-t5-small'
elif args.transformer == 'google/byt5-small':
model_name = 'google/byt5-small'
elif args.transformer == 'google/mt5-small':
model_name = 'google/mt5-small'
else:
model_name = 'Unknown'
early_stop = args.early_stop
patience = args.early_stop_patience
train_d = read_data(args.train_data)
dev_d = read_data(args.dev_data)
train_data = split_sent(train_d, split_length_train)
dev_data = split_sent(dev_d, split_length_dev)
print('Train size: {}\nDev size: {}\n'.format(len(train_data),
len(dev_data)))
print(train_model(model_name, lr, bs, sl_train, sl_dev,
ep, early_stop, patience, train_data, dev_data))
if __name__ == '__main__':
main()
|