--- license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: bertbase-olid results: [] --- # bertbase-olid This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7600 - Accuracy: 0.8252 - F1: 0.8251 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | 0.3717 | 1.0 | 884 | 0.3439 | 0.8484 | 0.8483 | | 0.3426 | 2.0 | 1768 | 0.4195 | 0.8204 | 0.8189 | | 0.2684 | 3.0 | 2652 | 0.4429 | 0.8430 | 0.8430 | | 0.1861 | 4.0 | 3536 | 0.6887 | 0.8303 | 0.8303 | | 0.1194 | 5.0 | 4420 | 0.7600 | 0.8252 | 0.8251 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.0+cu121 - Datasets 2.18.0 - Tokenizers 0.15.2