--- tags: - bertopic library_name: bertopic pipeline_tag: text-classification --- # MARTINI_enrich_BERTopic_AwakenedOutlaw This is a [BERTopic](https://github.com/MaartenGr/BERTopic) model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets. ## Usage To use this model, please install BERTopic: ``` pip install -U bertopic ``` You can use the model as follows: ```python from bertopic import BERTopic topic_model = BERTopic.load("AIDA-UPM/MARTINI_enrich_BERTopic_AwakenedOutlaw") topic_model.get_topic_info() ``` ## Topic overview * Number of topics: 5 * Number of training documents: 475
Click here for an overview of all topics. | Topic ID | Topic Keywords | Topic Frequency | Label | |----------|----------------|-----------------|-------| | -1 | obama - democrats - michelle - pedophile - everyone | 27 | -1_obama_democrats_michelle_pedophile | | 0 | leftists - globalist - freedom - everything - damn | 239 | 0_leftists_globalist_freedom_everything | | 1 | doj - pelosi - testifying - presidency - corrupt | 152 | 1_doj_pelosi_testifying_presidency | | 2 | zelensky - globalist - boris - tucker - gonzalo | 29 | 2_zelensky_globalist_boris_tucker | | 3 | desantis - vote - republican - dumb - opponents | 28 | 3_desantis_vote_republican_dumb |
## Training hyperparameters * calculate_probabilities: True * language: None * low_memory: False * min_topic_size: 10 * n_gram_range: (1, 1) * nr_topics: None * seed_topic_list: None * top_n_words: 10 * verbose: False * zeroshot_min_similarity: 0.7 * zeroshot_topic_list: None ## Framework versions * Numpy: 1.26.4 * HDBSCAN: 0.8.40 * UMAP: 0.5.7 * Pandas: 2.2.3 * Scikit-Learn: 1.5.2 * Sentence-transformers: 3.3.1 * Transformers: 4.46.3 * Numba: 0.60.0 * Plotly: 5.24.1 * Python: 3.10.12