diff --git "a/Llama-3.2-1b-it+_Unsloth_2x_faster_finetuning.ipynb" "b/Llama-3.2-1b-it+_Unsloth_2x_faster_finetuning.ipynb"
new file mode 100644--- /dev/null
+++ "b/Llama-3.2-1b-it+_Unsloth_2x_faster_finetuning.ipynb"
@@ -0,0 +1,8452 @@
+{
+ "cells": [
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "id": "2eSvM9zX_2d3"
+ },
+ "outputs": [],
+ "source": [
+ "%%capture\n",
+ "!pip install unsloth\n",
+ "# Also get the latest nightly Unsloth!\n",
+ "!pip uninstall unsloth -y && pip install --upgrade --no-cache-dir \"unsloth[colab-new] @ git+https://github.com/unslothai/unsloth.git\"\n",
+ "\n",
+ "# Install Flash Attention 2 for softcapping support\n",
+ "import torch\n",
+ "if torch.cuda.get_device_capability()[0] >= 8:\n",
+ " !pip install --no-deps packaging ninja einops \"flash-attn>=2.6.3\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "r2v_X2fA0Df5"
+ },
+ "source": [
+ "* We support Llama, Mistral, Phi-3, Gemma, Yi, DeepSeek, Qwen, TinyLlama, Vicuna, Open Hermes etc\n",
+ "* We support 16bit LoRA or 4bit QLoRA. Both 2x faster.\n",
+ "* `max_seq_length` can be set to anything, since we do automatic RoPE Scaling via [kaiokendev's](https://kaiokendev.github.io/til) method.\n",
+ "* [**NEW**] We make Gemma-2 9b / 27b **2x faster**! See our [Gemma-2 9b notebook](https://colab.research.google.com/drive/1vIrqH5uYDQwsJ4-OO3DErvuv4pBgVwk4?usp=sharing)\n",
+ "* [**NEW**] To finetune and auto export to Ollama, try our [Ollama notebook](https://colab.research.google.com/drive/1WZDi7APtQ9VsvOrQSSC5DDtxq159j8iZ?usp=sharing)\n",
+ "* [**NEW**] We make Mistral NeMo 12B 2x faster and fit in under 12GB of VRAM! [Mistral NeMo notebook](https://colab.research.google.com/drive/17d3U-CAIwzmbDRqbZ9NnpHxCkmXB6LZ0?usp=sharing)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 304,
+ "referenced_widgets": [
+ "a7d0f0d1ae2946919a4624afe63955ba",
+ "360a61aedcbc4a1dae69296db755834d",
+ "fc8c43fb06f94bbc92c15da546a0d8bd",
+ "31535774b35744aa941dcc1d9f38ab3c",
+ "6374dd2369534e179fb17e1d67ff979a",
+ "8787ae2dd4f14eb8bc32752c8005f0dd",
+ "5ecb5e170c3f48599b85ca722cd43ef6",
+ "a2c78f2c126541e4b2a97be71ead0c79",
+ "3663163dbd9a40e2921975f19cd71eda",
+ "c3adeda09c1843778efb13cd7c22658b",
+ "b4e3e9d17dec4594966adedaf0118c93",
+ "fa70c9f2a7d24836a2ceb5cebdfbd9a4",
+ "63033b1264fa4ef79aab3101450f1ab9",
+ "39a20c40ae4f4c11a95c7d66cabbc903",
+ "86a47700ac6a4b27976509c0b0025e82",
+ "926b19baa5ab462ea153546141c300c0",
+ "9220e848ab2a453091e1037f7e5c238f",
+ "dd2f632d1d524ff799801c723ac169c8",
+ "4395d5d9eaf34a768373e771caf6b604",
+ "002ea1c177e740898fcb02ea91c50f23",
+ "429c6801e21b40878a4e6ffadacc764a",
+ "dca0fa0c2aa74621a34747f8036a9c03",
+ "9321e15c3653489a87117e882eb5a6f7",
+ "6d3c7772b4c9461d93eeb5938655997d",
+ "73ec072c24774e539a83a7e0b2b5d9d6",
+ "d27de1b0b2e44fa18704cf3c5dbd2477",
+ "324a061e42e046fc947a65774ce9ae30",
+ "71f3ee0abf06493d8325f5f8db0d4de3",
+ "29b4146ef6d3464688600458d84f03ed",
+ "d14baad345f445f8ae98f2b180611b6c",
+ "2fd205a5971e4f6890b6b90d2a1d69fd",
+ "f00ae62ddd8949478892284992923099",
+ "8449f40ccd2e4ced89d684d5e1f69f1c",
+ "7a401485d06e48118fd61f2d1bf47c45",
+ "e596983b4b40476aa812f796ae84b95a",
+ "82c8463282084d2882bf30906bacc139",
+ "849082bd74234e64a125bd5112715d81",
+ "d8ff1d43870342868c6d9e445582caea",
+ "ec946b5b32ba49cf90bb4a8fb3921876",
+ "006a35217eaa4bc5ac50b0976f54fed0",
+ "e4c6000455444f98b57c66daa27b22f4",
+ "75297a92240548c3b6f969a66e35e392",
+ "718fb4c6633945fd859044f9e041effa",
+ "e2e2ebb66c4c4ec79afb24f436bea0c6",
+ "16818f8211624ab38d9798b97d775b7e",
+ "99595f2bfb9342eb8f8490ad0e0bfd1a",
+ "969f0865119f460c863682ef1e2745f3",
+ "4d02c65a677f4976a841545314ca28da",
+ "c696e50b3f9e48d0b03d790715985155",
+ "abbbfcda624c409f8f8589904dbbdd27",
+ "541d6cf97e194aea9f727213309c273d",
+ "75f4fceddf1b457bb2b5acac846e4146",
+ "f015660f44e14c498d1ad460ca46a46c",
+ "5cf2ca95dbfb43e98c10463c05c34d45",
+ "d8e36e25f33447cbb06529e2d905c2c1"
+ ]
+ },
+ "id": "QmUBVEnvCDJv",
+ "outputId": "27e0e3f5-d799-4ab9-fdc7-a0a0dd41c12b"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "🦥 Unsloth: Will patch your computer to enable 2x faster free finetuning.\n",
+ "==((====))== Unsloth 2024.9.post3: Fast Llama patching. Transformers = 4.45.1.\n",
+ " \\\\ /| GPU: Tesla T4. Max memory: 14.748 GB. Platform = Linux.\n",
+ "O^O/ \\_/ \\ Pytorch: 2.4.1+cu121. CUDA = 7.5. CUDA Toolkit = 12.1.\n",
+ "\\ / Bfloat16 = FALSE. FA [Xformers = 0.0.28.post1. FA2 = False]\n",
+ " \"-____-\" Free Apache license: http://github.com/unslothai/unsloth\n",
+ "Unsloth: Fast downloading is enabled - ignore downloading bars which are red colored!\n"
+ ]
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "a7d0f0d1ae2946919a4624afe63955ba",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "model.safetensors: 0%| | 0.00/2.47G [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "fa70c9f2a7d24836a2ceb5cebdfbd9a4",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "generation_config.json: 0%| | 0.00/184 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "9321e15c3653489a87117e882eb5a6f7",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer_config.json: 0%| | 0.00/54.6k [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "7a401485d06e48118fd61f2d1bf47c45",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "tokenizer.json: 0%| | 0.00/9.09M [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ },
+ {
+ "data": {
+ "application/vnd.jupyter.widget-view+json": {
+ "model_id": "16818f8211624ab38d9798b97d775b7e",
+ "version_major": 2,
+ "version_minor": 0
+ },
+ "text/plain": [
+ "special_tokens_map.json: 0%| | 0.00/454 [00:00, ?B/s]"
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "from unsloth import FastLanguageModel\n",
+ "import torch\n",
+ "max_seq_length = 2048 # Choose any! We auto support RoPE Scaling internally!\n",
+ "dtype = None # None for auto detection. Float16 for Tesla T4, V100, Bfloat16 for Ampere+\n",
+ "load_in_4bit = False # Use 4bit quantization to reduce memory usage. Can be False.\n",
+ "\n",
+ "# # 4bit pre quantized models we support for 4x faster downloading + no OOMs.\n",
+ "# fourbit_models = [\n",
+ "# \"unsloth/Meta-Llama-3.1-8B-bnb-4bit\", # Llama-3.1 15 trillion tokens model 2x faster!\n",
+ "# \"unsloth/Meta-Llama-3.1-8B-Instruct-bnb-4bit\",\n",
+ "# \"unsloth/Meta-Llama-3.1-70B-bnb-4bit\",\n",
+ "# \"unsloth/Meta-Llama-3.1-405B-bnb-4bit\", # We also uploaded 4bit for 405b!\n",
+ "# \"unsloth/Mistral-Nemo-Base-2407-bnb-4bit\", # New Mistral 12b 2x faster!\n",
+ "# \"unsloth/Mistral-Nemo-Instruct-2407-bnb-4bit\",\n",
+ "# \"unsloth/mistral-7b-v0.3-bnb-4bit\", # Mistral v3 2x faster!\n",
+ "# \"unsloth/mistral-7b-instruct-v0.3-bnb-4bit\",\n",
+ "# \"unsloth/Phi-3-mini-4k-instruct\", # Phi-3 2x faster!d\n",
+ "# \"unsloth/Phi-3-medium-4k-instruct\",\n",
+ "# \"unsloth/gemma-2-9b-bnb-4bit\",\n",
+ "# \"unsloth/gemma-2-27b-bnb-4bit\", # Gemma 2x faster!\n",
+ "# \"unsloth/gemma-2-2b-it\", # New small Gemma model!\n",
+ "# ] # More models at https://huggingface.co/unsloth\n",
+ "\n",
+ "model, tokenizer = FastLanguageModel.from_pretrained(\n",
+ " model_name = \"unsloth/Llama-3.2-1B-Instruct\",\n",
+ " max_seq_length = max_seq_length,\n",
+ " dtype = dtype,\n",
+ " load_in_4bit = load_in_4bit,\n",
+ " # token = \"hf_...\", # use one if using gated models like meta-llama/Llama-2-7b-hf\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "SXd9bTZd1aaL"
+ },
+ "source": [
+ "We now add LoRA adapters so we only need to update 1 to 10% of all parameters!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "6bZsfBuZDeCL",
+ "outputId": "da119557-726e-4605-ea13-dd4cd0ec448c"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "Unsloth 2024.9.post3 patched 16 layers with 16 QKV layers, 16 O layers and 16 MLP layers.\n"
+ ]
+ }
+ ],
+ "source": [
+ "model = FastLanguageModel.get_peft_model(\n",
+ " model,\n",
+ " r = 16, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128\n",
+ " target_modules = [\"q_proj\", \"k_proj\", \"v_proj\", \"o_proj\",\n",
+ " \"gate_proj\", \"up_proj\", \"down_proj\",],\n",
+ " lora_alpha = 16,\n",
+ " lora_dropout = 0, # Supports any, but = 0 is optimized\n",
+ " bias = \"none\", # Supports any, but = \"none\" is optimized\n",
+ " # [NEW] \"unsloth\" uses 30% less VRAM, fits 2x larger batch sizes!\n",
+ " use_gradient_checkpointing = \"unsloth\", # True or \"unsloth\" for very long context\n",
+ " random_state = 3407,\n",
+ " use_rslora = False, # We support rank stabilized LoRA\n",
+ " loftq_config = None, # And LoftQ\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "vITh0KVJ10qX"
+ },
+ "source": [
+ "\n",
+ "### Data Prep\n",
+ "We now use the Alpaca dataset from [yahma](https://huggingface.co/datasets/yahma/alpaca-cleaned), which is a filtered version of 52K of the original [Alpaca dataset](https://crfm.stanford.edu/2023/03/13/alpaca.html). You can replace this code section with your own data prep.\n",
+ "\n",
+ "**[NOTE]** To train only on completions (ignoring the user's input) read TRL's docs [here](https://huggingface.co/docs/trl/sft_trainer#train-on-completions-only).\n",
+ "\n",
+ "**[NOTE]** Remember to add the **EOS_TOKEN** to the tokenized output!! Otherwise you'll get infinite generations!\n",
+ "\n",
+ "If you want to use the `llama-3` template for ShareGPT datasets, try our conversational [notebook](https://colab.research.google.com/drive/1XamvWYinY6FOSX9GLvnqSjjsNflxdhNc?usp=sharing).\n",
+ "\n",
+ "For text completions like novel writing, try this [notebook](https://colab.research.google.com/drive/1ef-tab5bhkvWmBOObepl1WgJvfvSzn5Q?usp=sharing)."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "id": "LjY75GoYUCB8"
+ },
+ "outputs": [],
+ "source": [
+ "alpaca_prompt = \"\"\"Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.\n",
+ "\n",
+ "### Instruction:\n",
+ "{}\n",
+ "\n",
+ "### Input:\n",
+ "{}\n",
+ "\n",
+ "### Response:\n",
+ "{}\"\"\"\n",
+ "\n",
+ "EOS_TOKEN = tokenizer.eos_token # Must add EOS_TOKEN\n",
+ "def formatting_prompts_func(examples):\n",
+ " instructions = examples[\"prompt\"]\n",
+ " inputs = examples[\"query\"]\n",
+ " outputs = examples[\"response\"]\n",
+ " texts = []\n",
+ " for instruction, input, output in zip(instructions, inputs, outputs):\n",
+ " # Must add EOS_TOKEN, otherwise your generation will go on forever!\n",
+ " text = alpaca_prompt.format(instruction, input, output) + EOS_TOKEN\n",
+ " texts.append(text)\n",
+ " return { \"text\" : texts, }\n",
+ "pass\n",
+ "\n",
+ "# from datasets import load_dataset\n",
+ "# dataset = load_dataset(\"yahma/alpaca-cleaned\", split = \"train\")\n",
+ "# dataset = dataset.map(formatting_prompts_func, batched = True,)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "xUTnbqJUFDXc",
+ "outputId": "2799c1c4-388e-47a9-8fc4-0a703734b038"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training dataset size: 2256\n",
+ "Test dataset size: 565\n"
+ ]
+ }
+ ],
+ "source": [
+ "from datasets import load_dataset\n",
+ "\n",
+ "# Load the dataset\n",
+ "dataset = load_dataset(\"/content\", data_files=\"restructured_dataset.json\")\n",
+ "\n",
+ "# Split the dataset into 80% training and 20% test\n",
+ "split_ratio = 0.8\n",
+ "train_test_split = dataset[\"train\"].train_test_split(test_size=1 - split_ratio, seed=42) # Set seed for reproducibility\n",
+ "\n",
+ "# Get the train and test datasets\n",
+ "train_dataset = train_test_split[\"train\"]\n",
+ "test_dataset = train_test_split[\"test\"]\n",
+ "\n",
+ "# Output the sizes to verify\n",
+ "print(f\"Training dataset size: {len(train_dataset)}\")\n",
+ "print(f\"Test dataset size: {len(test_dataset)}\")\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "id": "cgFqwIGpDAiY"
+ },
+ "outputs": [],
+ "source": [
+ "train_dataset = train_dataset.map(formatting_prompts_func, batched = True,)\n",
+ "test_dataset = test_dataset.map(formatting_prompts_func, batched = True,)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "id": "83mlFwUChiz7"
+ },
+ "outputs": [],
+ "source": [
+ "# train_dataset['text']"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {
+ "id": "idAEIeSQ3xdS"
+ },
+ "source": [
+ "\n",
+ "### Train the model\n",
+ "Now let's use Huggingface TRL's `SFTTrainer`! More docs here: [TRL SFT docs](https://huggingface.co/docs/trl/sft_trainer). We do 60 steps to speed things up, but you can set `num_train_epochs=1` for a full run, and turn off `max_steps=None`. We also support TRL's `DPOTrainer`!"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/"
+ },
+ "id": "95_Nn-89DhsL",
+ "outputId": "f144252e-5cef-46db-e040-5e657772ef7f"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
+ " warnings.warn(\n",
+ "/usr/local/lib/python3.10/dist-packages/transformers/training_args.py:1545: FutureWarning: `evaluation_strategy` is deprecated and will be removed in version 4.46 of 🤗 Transformers. Use `eval_strategy` instead\n",
+ " warnings.warn(\n"
+ ]
+ }
+ ],
+ "source": [
+ "from trl import SFTTrainer\n",
+ "from transformers import TrainingArguments\n",
+ "from unsloth import is_bfloat16_supported\n",
+ "\n",
+ "trainer = SFTTrainer(\n",
+ " model = model,\n",
+ " tokenizer = tokenizer,\n",
+ " train_dataset = train_dataset,\n",
+ " eval_dataset=test_dataset,\n",
+ " dataset_text_field = \"text\",\n",
+ " max_seq_length = max_seq_length,\n",
+ " dataset_num_proc = 2,\n",
+ " packing = True, # Can make training 5x faster for short sequences.\n",
+ " args = TrainingArguments(\n",
+ " per_device_train_batch_size = 2,\n",
+ " per_device_eval_batch_size = 4,\n",
+ " gradient_accumulation_steps = 4,\n",
+ " warmup_steps = 5,\n",
+ " num_train_epochs = 2, # Set this for 1 full training run.\n",
+ " # max_steps = 60,\n",
+ " learning_rate = 2e-4,\n",
+ " fp16 = not is_bfloat16_supported(),\n",
+ " bf16 = is_bfloat16_supported(),\n",
+ " logging_steps = 1,\n",
+ " optim = \"adamw_8bit\",\n",
+ " weight_decay = 0.01,\n",
+ " lr_scheduler_type = \"linear\",\n",
+ " seed = 3407,\n",
+ " output_dir = \"outputs\",\n",
+ " evaluation_strategy=\"steps\"\n",
+ " ),\n",
+ ")"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 1000
+ },
+ "id": "hkC1v_kaBUiW",
+ "outputId": "ee9a3108-d05a-48a5-92a9-888257ea66ef"
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "==((====))== Unsloth - 2x faster free finetuning | Num GPUs = 1\n",
+ " \\\\ /| Num examples = 277 | Num Epochs = 2\n",
+ "O^O/ \\_/ \\ Batch size per device = 2 | Gradient Accumulation steps = 4\n",
+ "\\ / Total batch size = 8 | Total steps = 68\n",
+ " \"-____-\" Number of trainable parameters = 11,272,192\n"
+ ]
+ },
+ {
+ "data": {
+ "text/html": [
+ "\n",
+ "
\n",
+ " \n",
+ "
\n",
+ " [68/68 33:48, Epoch 1/2]\n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " Step | \n",
+ " Training Loss | \n",
+ " Validation Loss | \n",
+ "
\n",
+ " \n",
+ " \n",
+ " \n",
+ " 1 | \n",
+ " 0.750300 | \n",
+ " 0.767613 | \n",
+ "
\n",
+ " \n",
+ " 2 | \n",
+ " 0.709100 | \n",
+ " 0.760781 | \n",
+ "
\n",
+ " \n",
+ " 3 | \n",
+ " 0.685500 | \n",
+ " 0.748784 | \n",
+ "
\n",
+ " \n",
+ " 4 | \n",
+ " 0.652100 | \n",
+ " 0.731342 | \n",
+ "
\n",
+ " \n",
+ " 5 | \n",
+ " 0.711400 | \n",
+ " 0.714547 | \n",
+ "
\n",
+ " \n",
+ " 6 | \n",
+ " 0.774900 | \n",
+ " 0.693540 | \n",
+ "
\n",
+ " \n",
+ " 7 | \n",
+ " 0.665600 | \n",
+ " 0.674969 | \n",
+ "
\n",
+ " \n",
+ " 8 | \n",
+ " 0.735700 | \n",
+ " 0.656129 | \n",
+ "
\n",
+ " \n",
+ " 9 | \n",
+ " 0.620000 | \n",
+ " 0.638963 | \n",
+ "
\n",
+ " \n",
+ " 10 | \n",
+ " 0.591200 | \n",
+ " 0.621351 | \n",
+ "
\n",
+ " \n",
+ " 11 | \n",
+ " 0.650800 | \n",
+ " 0.604045 | \n",
+ "
\n",
+ " \n",
+ " 12 | \n",
+ " 0.587300 | \n",
+ " 0.587853 | \n",
+ "
\n",
+ " \n",
+ " 13 | \n",
+ " 0.610400 | \n",
+ " 0.573831 | \n",
+ "
\n",
+ " \n",
+ " 14 | \n",
+ " 0.544500 | \n",
+ " 0.560170 | \n",
+ "
\n",
+ " \n",
+ " 15 | \n",
+ " 0.590700 | \n",
+ " 0.545877 | \n",
+ "
\n",
+ " \n",
+ " 16 | \n",
+ " 0.492100 | \n",
+ " 0.534258 | \n",
+ "
\n",
+ " \n",
+ " 17 | \n",
+ " 0.520900 | \n",
+ " 0.519963 | \n",
+ "
\n",
+ " \n",
+ " 18 | \n",
+ " 0.527900 | \n",
+ " 0.505541 | \n",
+ "
\n",
+ " \n",
+ " 19 | \n",
+ " 0.539500 | \n",
+ " 0.492883 | \n",
+ "
\n",
+ " \n",
+ " 20 | \n",
+ " 0.508900 | \n",
+ " 0.480199 | \n",
+ "
\n",
+ " \n",
+ " 21 | \n",
+ " 0.462900 | \n",
+ " 0.467022 | \n",
+ "
\n",
+ " \n",
+ " 22 | \n",
+ " 0.441700 | \n",
+ " 0.453975 | \n",
+ "
\n",
+ " \n",
+ " 23 | \n",
+ " 0.418200 | \n",
+ " 0.442243 | \n",
+ "
\n",
+ " \n",
+ " 24 | \n",
+ " 0.432400 | \n",
+ " 0.430087 | \n",
+ "
\n",
+ " \n",
+ " 25 | \n",
+ " 0.419300 | \n",
+ " 0.418594 | \n",
+ "
\n",
+ " \n",
+ " 26 | \n",
+ " 0.395600 | \n",
+ " 0.407527 | \n",
+ "
\n",
+ " \n",
+ " 27 | \n",
+ " 0.387800 | \n",
+ " 0.396506 | \n",
+ "
\n",
+ " \n",
+ " 28 | \n",
+ " 0.450600 | \n",
+ " 0.384659 | \n",
+ "
\n",
+ " \n",
+ " 29 | \n",
+ " 0.370400 | \n",
+ " 0.373602 | \n",
+ "
\n",
+ " \n",
+ " 30 | \n",
+ " 0.364500 | \n",
+ " 0.363078 | \n",
+ "
\n",
+ " \n",
+ " 31 | \n",
+ " 0.332300 | \n",
+ " 0.353667 | \n",
+ "
\n",
+ " \n",
+ " 32 | \n",
+ " 0.305700 | \n",
+ " 0.344543 | \n",
+ "
\n",
+ " \n",
+ " 33 | \n",
+ " 0.322600 | \n",
+ " 0.335432 | \n",
+ "
\n",
+ " \n",
+ " 34 | \n",
+ " 0.338900 | \n",
+ " 0.327199 | \n",
+ "
\n",
+ " \n",
+ " 35 | \n",
+ " 0.331000 | \n",
+ " 0.318517 | \n",
+ "
\n",
+ " \n",
+ " 36 | \n",
+ " 0.349100 | \n",
+ " 0.310108 | \n",
+ "
\n",
+ " \n",
+ " 37 | \n",
+ " 0.252700 | \n",
+ " 0.303383 | \n",
+ "
\n",
+ " \n",
+ " 38 | \n",
+ " 0.294900 | \n",
+ " 0.297450 | \n",
+ "
\n",
+ " \n",
+ " 39 | \n",
+ " 0.247400 | \n",
+ " 0.289259 | \n",
+ "
\n",
+ " \n",
+ " 40 | \n",
+ " 0.242800 | \n",
+ " 0.281499 | \n",
+ "
\n",
+ " \n",
+ " 41 | \n",
+ " 0.254700 | \n",
+ " 0.275865 | \n",
+ "
\n",
+ " \n",
+ " 42 | \n",
+ " 0.259000 | \n",
+ " 0.270416 | \n",
+ "
\n",
+ " \n",
+ " 43 | \n",
+ " 0.238900 | \n",
+ " 0.264625 | \n",
+ "
\n",
+ " \n",
+ " 44 | \n",
+ " 0.239500 | \n",
+ " 0.258969 | \n",
+ "
\n",
+ " \n",
+ " 45 | \n",
+ " 0.223000 | \n",
+ " 0.253462 | \n",
+ "
\n",
+ " \n",
+ " 46 | \n",
+ " 0.207800 | \n",
+ " 0.248274 | \n",
+ "
\n",
+ " \n",
+ " 47 | \n",
+ " 0.251200 | \n",
+ " 0.242153 | \n",
+ "
\n",
+ " \n",
+ " 48 | \n",
+ " 0.200100 | \n",
+ " 0.237188 | \n",
+ "
\n",
+ " \n",
+ " 49 | \n",
+ " 0.214300 | \n",
+ " 0.232814 | \n",
+ "
\n",
+ " \n",
+ " 50 | \n",
+ " 0.199100 | \n",
+ " 0.228829 | \n",
+ "
\n",
+ " \n",
+ " 51 | \n",
+ " 0.226400 | \n",
+ " 0.225165 | \n",
+ "
\n",
+ " \n",
+ " 52 | \n",
+ " 0.197800 | \n",
+ " 0.222183 | \n",
+ "
\n",
+ " \n",
+ " 53 | \n",
+ " 0.222200 | \n",
+ " 0.219091 | \n",
+ "
\n",
+ " \n",
+ " 54 | \n",
+ " 0.222400 | \n",
+ " 0.215774 | \n",
+ "
\n",
+ " \n",
+ " 55 | \n",
+ " 0.193700 | \n",
+ " 0.212546 | \n",
+ "
\n",
+ " \n",
+ " 56 | \n",
+ " 0.205900 | \n",
+ " 0.209754 | \n",
+ "
\n",
+ " \n",
+ " 57 | \n",
+ " 0.216200 | \n",
+ " 0.207039 | \n",
+ "
\n",
+ " \n",
+ " 58 | \n",
+ " 0.196500 | \n",
+ " 0.204481 | \n",
+ "
\n",
+ " \n",
+ " 59 | \n",
+ " 0.207200 | \n",
+ " 0.202018 | \n",
+ "
\n",
+ " \n",
+ " 60 | \n",
+ " 0.176200 | \n",
+ " 0.199767 | \n",
+ "
\n",
+ " \n",
+ " 61 | \n",
+ " 0.160900 | \n",
+ " 0.197782 | \n",
+ "
\n",
+ " \n",
+ " 62 | \n",
+ " 0.169300 | \n",
+ " 0.195964 | \n",
+ "
\n",
+ " \n",
+ " 63 | \n",
+ " 0.185100 | \n",
+ " 0.194448 | \n",
+ "
\n",
+ " \n",
+ " 64 | \n",
+ " 0.182700 | \n",
+ " 0.193181 | \n",
+ "
\n",
+ " \n",
+ " 65 | \n",
+ " 0.171500 | \n",
+ " 0.192146 | \n",
+ "
\n",
+ " \n",
+ " 66 | \n",
+ " 0.164900 | \n",
+ " 0.191384 | \n",
+ "
\n",
+ " \n",
+ " 67 | \n",
+ " 0.192900 | \n",
+ " 0.190831 | \n",
+ "
\n",
+ " \n",
+ " 68 | \n",
+ " 0.209000 | \n",
+ " 0.190555 | \n",
+ "
\n",
+ " \n",
+ "
"
+ ],
+ "text/plain": [
+ ""
+ ]
+ },
+ "metadata": {},
+ "output_type": "display_data"
+ }
+ ],
+ "source": [
+ "trainer_stats=trainer.train()"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "colab": {
+ "base_uri": "https://localhost:8080/",
+ "height": 440
+ },
+ "id": "yqxqAZ7KJ4oL",
+ "outputId": "0c2d6e9e-bad5-4dae-ab40-6166961bf7a2"
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Training Losses: [0.7503, 0.7091, 0.6855, 0.6521, 0.7114, 0.7749, 0.6656, 0.7357, 0.62, 0.5912, 0.6508, 0.5873, 0.6104, 0.5445, 0.5907, 0.4921, 0.5209, 0.5279, 0.5395, 0.5089, 0.4629, 0.4417, 0.4182, 0.4324, 0.4193, 0.3956, 0.3878, 0.4506, 0.3704, 0.3645, 0.3323, 0.3057, 0.3226, 0.3389, 0.331, 0.3491, 0.2527, 0.2949, 0.2474, 0.2428, 0.2547, 0.259, 0.2389, 0.2395, 0.223, 0.2078, 0.2512, 0.2001, 0.2143, 0.1991, 0.2264, 0.1978, 0.2222, 0.2224, 0.1937, 0.2059, 0.2162, 0.1965, 0.2072, 0.1762, 0.1609, 0.1693, 0.1851, 0.1827, 0.1715, 0.1649, 0.1929, 0.209]\n",
+ "Evaluation Losses: [0.767612636089325, 0.7607811093330383, 0.7487840056419373, 0.7313423156738281, 0.7145472764968872, 0.6935401558876038, 0.6749686598777771, 0.6561285853385925, 0.6389631032943726, 0.6213513016700745, 0.6040447950363159, 0.5878527164459229, 0.5738311409950256, 0.5601701736450195, 0.5458768606185913, 0.534257709980011, 0.5199625492095947, 0.5055410265922546, 0.49288254976272583, 0.4801987111568451, 0.4670219421386719, 0.45397475361824036, 0.442242830991745, 0.4300874173641205, 0.41859403252601624, 0.40752682089805603, 0.3965064585208893, 0.38465917110443115, 0.3736022412776947, 0.36307793855667114, 0.353667289018631, 0.34454306960105896, 0.3354315161705017, 0.32719936966896057, 0.3185167610645294, 0.31010758876800537, 0.30338314175605774, 0.2974502742290497, 0.2892588973045349, 0.2814987003803253, 0.2758648991584778, 0.27041569352149963, 0.26462453603744507, 0.2589690685272217, 0.2534623146057129, 0.2482735514640808, 0.24215327203273773, 0.23718804121017456, 0.23281413316726685, 0.22882941365242004, 0.2251654714345932, 0.22218288481235504, 0.21909120678901672, 0.21577446162700653, 0.21254558861255646, 0.20975379645824432, 0.207039475440979, 0.2044808268547058, 0.2020176351070404, 0.1997668743133545, 0.1977815479040146, 0.19596432149410248, 0.1944475919008255, 0.19318059086799622, 0.19214633107185364, 0.19138379395008087, 0.19083082675933838, 0.19055481255054474]\n"
+ ]
+ },
+ {
+ "data": {
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAA1MAAAHWCAYAAACSWtPeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAACw9ElEQVR4nOzdd3QU1fvH8ffsppEOJCSUQOi9hiIgTUCaKIKKClIUVARREb+KBQUVfnYUVBAFVEARRSx0EJCmdKR3Qk1CSSd1d39/LFmMJJCEJAvh8zpnzsnO3LnzDEbIk3vvcw2bzWZDREREREREcsXk7ABERERERERuRkqmRERERERE8kDJlIiIiIiISB4omRIREREREckDJVMiIiIiIiJ5oGRKREREREQkD5RMiYiIiIiI5IGSKRERERERkTxQMiUiIiIiIpIHSqZERG5AAwYMIDQ0NE/3vvHGGxiGkb8B3WCOHTuGYRjMmDGj0J9tGAZvvPGG4/OMGTMwDINjx45d897Q0FAGDBiQr/Fcz/eKiIhcHyVTIiK5YBhGjo5Vq1Y5O9Rb3vDhwzEMg0OHDmXb5pVXXsEwDP75559CjCz3Tp8+zRtvvMH27dudHYpDRkL7/vvvOzsUERGncXF2ACIiN5Nvv/020+dvvvmGZcuWXXG+Zs2a1/WcqVOnYrVa83Tvq6++yksvvXRdzy8K+vTpw8SJE5k9ezajR4/Oss13331H3bp1qVevXp6f88gjj/Dggw/i7u6e5z6u5fTp04wZM4bQ0FAaNGiQ6dr1fK+IiMj1UTIlIpILffv2zfT5r7/+YtmyZVec/6+LFy/i6emZ4+e4urrmKT4AFxcXXFz013uzZs2oUqUK3333XZbJ1IYNGzh69Cj/93//d13PMZvNmM3m6+rjelzP94qIiFwfTfMTEclnbdu2pU6dOmzZsoXWrVvj6enJyy+/DMAvv/xCt27dKFOmDO7u7lSuXJk333wTi8WSqY//roP595SqL774gsqVK+Pu7k6TJk3YtGlTpnuzWjNlGAbDhg1j/vz51KlTB3d3d2rXrs3ixYuviH/VqlU0btwYDw8PKleuzJQpU3K8DmvNmjXcf//9lC9fHnd3d0JCQnjuuedISkq64v28vb05deoUPXr0wNvbm8DAQEaOHHnFn0VMTAwDBgzAz88Pf39/+vfvT0xMzDVjAfvo1L59+9i6desV12bPno1hGDz00EOkpqYyevRowsLC8PPzw8vLi1atWrFy5cprPiOrNVM2m4233nqLcuXK4enpSbt27di9e/cV9164cIGRI0dSt25dvL298fX1pUuXLuzYscPRZtWqVTRp0gSAgQMHOqaSZqwXy2rNVGJiIs8//zwhISG4u7tTvXp13n//fWw2W6Z2ufm+yKuoqCgee+wxgoKC8PDwoH79+nz99ddXtPv+++8JCwvDx8cHX19f6taty8cff+y4npaWxpgxY6hatSoeHh6ULFmS22+/nWXLluVbrCIiuaVfXYqIFIDz58/TpUsXHnzwQfr27UtQUBBg/8Hb29ubESNG4O3tzR9//MHo0aOJi4vjvffeu2a/s2fPJj4+nieeeALDMHj33Xfp2bMnR44cueYIxdq1a5k3bx5PPfUUPj4+fPLJJ/Tq1Yvjx49TsmRJALZt20bnzp0pXbo0Y8aMwWKxMHbsWAIDA3P03nPnzuXixYsMGTKEkiVLsnHjRiZOnMjJkyeZO3duprYWi4VOnTrRrFkz3n//fZYvX84HH3xA5cqVGTJkCGBPSu655x7Wrl3Lk08+Sc2aNfn555/p379/juLp06cPY8aMYfbs2TRq1CjTs3/44QdatWpF+fLlOXfuHF9++SUPPfQQgwcPJj4+nq+++opOnTqxcePGK6bWXcvo0aN566236Nq1K127dmXr1q3ceeedpKamZmp35MgR5s+fz/3330/FihWJjIxkypQptGnThj179lCmTBlq1qzJ2LFjGT16NI8//jitWrUCoEWLFlk+22azcffdd7Ny5Uoee+wxGjRowJIlS3jhhRc4deoUH330Uab2Ofm+yKukpCTatm3LoUOHGDZsGBUrVmTu3LkMGDCAmJgYnnnmGQCWLVvGQw89RPv27XnnnXcA2Lt3L+vWrXO0eeONNxg/fjyDBg2iadOmxMXFsXnzZrZu3UrHjh2vK04RkTyziYhIng0dOtT2379K27RpYwNskydPvqL9xYsXrzj3xBNP2Dw9PW3JycmOc/3797dVqFDB8fno0aM2wFayZEnbhQsXHOd/+eUXG2D77bffHOdef/31K2ICbG5ubrZDhw45zu3YscMG2CZOnOg41717d5unp6ft1KlTjnMHDx60ubi4XNFnVrJ6v/Hjx9sMw7CFh4dnej/ANnbs2ExtGzZsaAsLC3N8nj9/vg2wvfvuu45z6enptlatWtkA2/Tp068ZU5MmTWzlypWzWSwWx7nFixfbANuUKVMcfaakpGS6Lzo62hYUFGR79NFHM50HbK+//rrj8/Tp022A7ejRozabzWaLioqyubm52bp162azWq2Odi+//LINsPXv399xLjk5OVNcNpv9v7W7u3umP5tNmzZl+77//V7J+DN76623MrW77777bIZhZPoeyOn3RVYyviffe++9bNtMmDDBBthmzpzpOJeammpr3ry5zdvb2xYXF2ez2Wy2Z555xubr62tLT0/Ptq/69evbunXrdtWYREQKm6b5iYgUAHd3dwYOHHjF+WLFijm+jo+P59y5c7Rq1YqLFy+yb9++a/bbu3dvihcv7vicMUpx5MiRa97boUMHKleu7Phcr149fH19HfdaLBaWL19Ojx49KFOmjKNdlSpV6NKlyzX7h8zvl5iYyLlz52jRogU2m41t27Zd0f7JJ5/M9LlVq1aZ3mXhwoW4uLg4RqrAvkbp6aefzlE8YF/ndvLkSf7880/HudmzZ+Pm5sb999/v6NPNzQ0Aq9XKhQsXSE9Pp3HjxllOEbya5cuXk5qaytNPP51pauSzzz57RVt3d3dMJvs/xRaLhfPnz+Pt7U316tVz/dwMCxcuxGw2M3z48Eznn3/+eWw2G4sWLcp0/lrfF9dj4cKFBAcH89BDDznOubq6Mnz4cBISEli9ejUA/v7+JCYmXnXKnr+/P7t37+bgwYPXHZeISH5RMiUiUgDKli3r+OH833bv3s29996Ln58fvr6+BAYGOopXxMbGXrPf8uXLZ/qckVhFR0fn+t6M+zPujYqKIikpiSpVqlzRLqtzWTl+/DgDBgygRIkSjnVQbdq0Aa58Pw8PjyumD/47HoDw8HBKly6Nt7d3pnbVq1fPUTwADz74IGazmdmzZwOQnJzMzz//TJcuXTIlpl9//TX16tVzrMcJDAxkwYIFOfrv8m/h4eEAVK1aNdP5wMDATM8De+L20UcfUbVqVdzd3QkICCAwMJB//vkn18/99/PLlCmDj49PpvMZFSYz4stwre+L6xEeHk7VqlUdCWN2sTz11FNUq1aNLl26UK5cOR599NEr1m2NHTuWmJgYqlWrRt26dXnhhRdu+JL2IlL0KZkSESkA/x6hyRATE0ObNm3YsWMHY8eO5bfffmPZsmWONSI5KW+dXdU4238KC+T3vTlhsVjo2LEjCxYs4MUXX2T+/PksW7bMUSjhv+9XWBXwSpUqRceOHfnpp59IS0vjt99+Iz4+nj59+jjazJw5kwEDBlC5cmW++uorFi9ezLJly7jjjjsKtOz4uHHjGDFiBK1bt2bmzJksWbKEZcuWUbt27UIrd17Q3xc5UapUKbZv386vv/7qWO/VpUuXTGvjWrduzeHDh5k2bRp16tThyy+/pFGjRnz55ZeFFqeIyH+pAIWISCFZtWoV58+fZ968ebRu3dpx/ujRo06M6rJSpUrh4eGR5Sa3V9v4NsPOnTs5cOAAX3/9Nf369XOcv55qaxUqVGDFihUkJCRkGp3av39/rvrp06cPixcvZtGiRcyePRtfX1+6d+/uuP7jjz9SqVIl5s2bl2lq3uuvv56nmAEOHjxIpUqVHOfPnj17xWjPjz/+SLt27fjqq68ynY+JiSEgIMDxOSeVFP/9/OXLlxMfH59pdCpjGmlGfIWhQoUK/PPPP1it1kyjU1nF4ubmRvfu3enevTtWq5WnnnqKKVOm8NprrzlGRkuUKMHAgQMZOHAgCQkJtG7dmjfeeINBgwYV2juJiPybRqZERApJxgjAv3/jn5qaymeffeaskDIxm8106NCB+fPnc/r0acf5Q4cOXbHOJrv7IfP72Wy2TOWtc6tr166kp6fz+eefO85ZLBYmTpyYq3569OiBp6cnn332GYsWLaJnz554eHhcNfa///6bDRs25DrmDh064OrqysSJEzP1N2HChCvams3mK0aA5s6dy6lTpzKd8/LyAshRSfiuXbtisViYNGlSpvMfffQRhmHkeP1bfujatSsRERHMmTPHcS49PZ2JEyfi7e3tmAJ6/vz5TPeZTCbHRsopKSlZtvH29qZKlSqO6yIizqCRKRGRQtKiRQuKFy9O//79GT58OIZh8O233xbqdKpreeONN1i6dCktW7ZkyJAhjh/K69Spw/bt2696b40aNahcuTIjR47k1KlT+Pr68tNPP13X2pvu3bvTsmVLXnrpJY4dO0atWrWYN29ertcTeXt706NHD8e6qX9P8QO46667mDdvHvfeey/dunXj6NGjTJ48mVq1apGQkJCrZ2XslzV+/HjuuusuunbtyrZt21i0aFGm0aaM544dO5aBAwfSokULdu7cyaxZszKNaAFUrlwZf39/Jk+ejI+PD15eXjRr1oyKFSte8fzu3bvTrl07XnnlFY4dO0b9+vVZunQpv/zyC88++2ymYhP5YcWKFSQnJ19xvkePHjz++ONMmTKFAQMGsGXLFkJDQ/nxxx9Zt24dEyZMcIycDRo0iAsXLnDHHXdQrlw5wsPDmThxIg0aNHCsr6pVqxZt27YlLCyMEiVKsHnzZn788UeGDRuWr+8jIpIbSqZERApJyZIl+f3333n++ed59dVXKV68OH379qV9+/Z06tTJ2eEBEBYWxqJFixg5ciSvvfYaISEhjB07lr17916z2qCrqyu//fYbw4cPZ/z48Xh4eHDvvfcybNgw6tevn6d4TCYTv/76K88++ywzZ87EMAzuvvtuPvjgAxo2bJirvvr06cPs2bMpXbo0d9xxR6ZrAwYMICIigilTprBkyRJq1arFzJkzmTt3LqtWrcp13G+99RYeHh5MnjyZlStX0qxZM5YuXUq3bt0ytXv55ZdJTExk9uzZzJkzh0aNGrFgwQJeeumlTO1cXV35+uuvGTVqFE8++STp6elMnz49y2Qq489s9OjRzJkzh+nTpxMaGsp7773H888/n+t3uZbFixdnuclvaGgoderUYdWqVbz00kt8/fXXxMXFUb16daZPn86AAQMcbfv27csXX3zBZ599RkxMDMHBwfTu3Zs33njDMT1w+PDh/PrrryxdupSUlBQqVKjAW2+9xQsvvJDv7yQiklOG7Ub6laiIiNyQevToobLUIiIi/6E1UyIikklSUlKmzwcPHmThwoW0bdvWOQGJiIjcoDQyJSIimZQuXZoBAwZQqVIlwsPD+fzzz0lJSWHbtm1X7J0kIiJyK9OaKRERyaRz58589913RERE4O7uTvPmzRk3bpwSKRERkf/QyJSIiIiIiEgeaM2UiIiIiIhIHiiZEhERERERyQOnr5n69NNPee+994iIiKB+/fpMnDiRpk2bZtt+woQJfP755xw/fpyAgADuu+8+x34mOWG1Wjl9+jQ+Pj4YhpFfryEiIiIiIjcZm81GfHw8ZcqUcexrl9sOnOb777+3ubm52aZNm2bbvXu3bfDgwTZ/f39bZGRklu1nzZplc3d3t82aNct29OhR25IlS2ylS5e2Pffcczl+5okTJ2yADh06dOjQoUOHDh06dNgA24kTJ/KUzzi1AEWzZs1o0qQJkyZNAuyjRiEhITz99NNX7P4OMGzYMPbu3cuKFSsc555//nn+/vtv1q5dm6NnxsbG4u/vz4kTJ/D19c2fFxERERERkZtOXFwcISEhxMTE4Ofnl+v7nTbNLzU1lS1btjBq1CjHOZPJRIcOHdiwYUOW97Ro0YKZM2eyceNGmjZtypEjR1i4cCGPPPJIts9JSUkhJSXF8Tk+Ph4AX19fJVMiIiIiIpLn5T9OS6bOnTuHxWIhKCgo0/mgoCD27duX5T0PP/ww586d4/bbb8dms5Gens6TTz7Jyy+/nO1zxo8fz5gxY/I1dhERERERkZuqmt+qVasYN24cn332GVu3bmXevHksWLCAN998M9t7Ro0aRWxsrOM4ceJEIUYsIiIiIiJFldNGpgICAjCbzURGRmY6HxkZSXBwcJb3vPbaazzyyCMMGjQIgLp165KYmMjjjz/OK6+8kmUFDnd3d9zd3fP/BURERERE5JbmtGTKzc2NsLAwVqxYQY8ePQB7AYoVK1YwbNiwLO+5ePHiFQmT2WwGwIl1NERERETkOmUs4bBYLM4ORYoYV1dXR86Q35y6z9SIESPo378/jRs3pmnTpkyYMIHExEQGDhwIQL9+/Shbtizjx48HoHv37nz44Yc0bNiQZs2acejQIV577TW6d+9eYH9AIiIiIlKwUlNTOXPmDBcvXnR2KFIEGYZBuXLl8Pb2zve+nZpM9e7dm7NnzzJ69GgiIiJo0KABixcvdhSlOH78eKaRqFdffRXDMHj11Vc5deoUgYGBdO/enbfffttZryAiIiIi18FqtXL06FHMZjNlypTBzc0tz5XVRP7LZrNx9uxZTp48SdWqVfN9AMap+0w5Q1xcHH5+fsTGxqo0uoiIiIiTJScnc/ToUSpUqICnp6ezw5EiKCkpiWPHjlGxYkU8PDwyXbve3OCmquYnIiIiIkVTVoXERPJDQY506rtWREREREQkD5RMiYiIiIiI5IGSKRERERGRG0BoaCgTJkzIcftVq1ZhGAYxMTEFFpNcnZIpEREREZFcMAzjqscbb7yRp343bdrE448/nuP2LVq04MyZM/j5+eXpeTmlpC17Ti2NLiIiIiJyszlz5ozj6zlz5jB69Gj279/vOPfv/YxsNhsWiwUXl2v/2B0YGJirONzc3AgODs7VPZK/NDIl+erTlYd4bf4ubrGK+yIiIpJPbDYbF1PTnXLk9OeX4OBgx+Hn54dhGI7P+/btw8fHh0WLFhEWFoa7uztr167l8OHD3HPPPQQFBeHt7U2TJk1Yvnx5pn7/O83PMAy+/PJL7r33Xjw9PalatSq//vqr4/p/R4xmzJiBv78/S5YsoWbNmnh7e9O5c+dMyV96ejrDhw/H39+fkiVL8uKLL9K/f3969OiR5/9m0dHR9OvXj+LFi+Pp6UmXLl04ePCg43p4eDjdu3enePHieHl5Ubt2bRYuXOi4t0+fPgQGBlKsWDGqVq3K9OnT8xxLYdPIlOSbqPhk3lti/63Mg01DqF2mYIecRUREpOhJSrNQa/QSpzx7z9hOeLrlz4/HL730Eu+//z6VKlWiePHinDhxgq5du/L222/j7u7ON998Q/fu3dm/fz/ly5fPtp8xY8bw7rvv8t577zFx4kT69OlDeHg4JUqUyLL9xYsXef/99/n2228xmUz07duXkSNHMmvWLADeeecdZs2axfTp06lZsyYff/wx8+fPp127dnl+1wEDBnDw4EF+/fVXfH19efHFF+natSt79uzB1dWVoUOHkpqayp9//omXlxd79uxxjN699tpr7Nmzh0WLFhEQEMChQ4dISkrKcyyFTcmU5JvV+886vj4YmaBkSkRERG5ZY8eOpWPHjo7PJUqUoH79+o7Pb775Jj///DO//vorw4YNy7afAQMG8NBDDwEwbtw4PvnkEzZu3Ejnzp2zbJ+WlsbkyZOpXLkyAMOGDWPs2LGO6xMnTmTUqFHce++9AEyaNMkxSpQXGUnUunXraNGiBQCzZs0iJCSE+fPnc//993P8+HF69epF3bp1AahUqZLj/uPHj9OwYUMaN24M2EfnbiZKpiTfrNwf5fj6QGS8EyMRERGRm1UxVzN7xnZy2rPzS0ZykCEhIYE33niDBQsWcObMGdLT00lKSuL48eNX7adevXqOr728vPD19SUqKirb9p6eno5ECqB06dKO9rGxsURGRtK0aVPHdbPZTFhYGFarNVfvl2Hv3r24uLjQrFkzx7mSJUtSvXp19u7dC8Dw4cMZMmQIS5cupUOHDvTq1cvxXkOGDKFXr15s3bqVO++8kx49ejiSspuB1kw506Hl8HV32P4dpCQ4O5rrkmaxsubAOcfnA5E39/uIiIiIcxiGgaebi1MOwzDy7T28vLwyfR45ciQ///wz48aNY82aNWzfvp26deuSmpp61X5cXV2v+PO5WuKTVXtnr2UfNGgQR44c4ZFHHmHnzp00btyYiRMnAtClSxfCw8N57rnnOH36NO3bt2fkyJFOjTc3lEw50/bZcPRPmP8kvF8Nfn4SjqyGPP5mwJk2H4smPiXd8flglEamRERERDKsW7eOAQMGcO+991K3bl2Cg4M5duxYocbg5+dHUFAQmzZtcpyzWCxs3bo1z33WrFmT9PR0/v77b8e58+fPs3//fmrVquU4FxISwpNPPsm8efN4/vnnmTp1quNaYGAg/fv3Z+bMmUyYMIEvvvgiz/EUNk3zc6b2r0NgTdgxGy4cgR3f2Q+/EKjXG+o/BAFVnB1ljqy6NMWvTbVAVh84y/ELF0lKtVDMLf+Gy0VERERuVlWrVmXevHl0794dwzB47bXX8jy17no8/fTTjB8/nipVqlCjRg0mTpxIdHR0jkbldu7ciY+Pj+OzYRjUr1+fe+65h8GDBzNlyhR8fHx46aWXKFu2LPfccw8Azz77LF26dKFatWpER0ezcuVKatasCcDo0aMJCwujdu3apKSk8Pvvvzuu3QyUTDlT8QrQ5gVoPRJObLQnVbt+htgTsOZ9+1GuiT2pqtMTihV3dsTZylgvdV9YOXaeiuVCYiqHohKoW05FKEREREQ+/PBDHn30UVq0aEFAQAAvvvgicXFxhR7Hiy++SEREBP369cNsNvP444/TqVMnzOZr/wK8devWmT6bzWbS09OZPn06zzzzDHfddRepqam0bt2ahQsXOqYcWiwWhg4dysmTJ/H19aVz58589NFHgH2vrFGjRnHs2DGKFStGq1at+P777/P/xQuIYXP2JMpCFhcXh5+fH7Gxsfj6+jo7nCulJcP+hfYRqkMrwGaxnze7QZ1e0HEseJdyboz/cTL6Ire/sxKTAdteu5PHv93M30cv8MH99ekVVs7Z4YmIiMgNLDk5maNHj1KxYkU8PDycHc4tx2q1UrNmTR544AHefPNNZ4dTIK72PXa9uYHWTN1oXD3so1B95sKIvXDnW1CqNlhS7QnWp01hxxy4gXLglZdKoodVKI6fpyvVguzDvwe0bkpERETkhhIeHs7UqVM5cOAAO3fuZMiQIRw9epSHH37Y2aHdlJRM3ch8gqDF0zBkHTy2HILrQlI0/Pw4zLofYk44O0IAVu2zT/FrV8M+YlYt2J5MHVRFPxEREZEbislkYsaMGTRp0oSWLVuyc+dOli9fflOtU7qRaM3UzcAwIKQJDF4J6z6G1e/AoWXw2W3QcQyEPQom5+TFyWkW1h22l0RvV/1SMlXKvqO19poSERERubGEhISwbt06Z4dRZGhk6mZidrUXq3hyHYQ0g9QEWPA8zOgG5w45JaS/jpwnOc1KaT8PalwakcqY5ncyOonEf5VLFxEREREpSpRMOVmaxYrFmsv1T4HVYOBi6PIuuHrB8fUwuSWsnQCWwk1eVl1aL9W2eilHSc3iXm4EeLsDcDBKU/1EREREpGhSMuVEs/8+Tpt3V7J8b2TubzaZoNkT8NQGqNQO0pNh+evwZXuI2Jn/wWbBZrPxR8Z6qeqBma5VC9JUPxEREREp2pRMOdHJ6Iucjk3myzVH8t5J8QrwyM9wz2fg4QdntsMXbWHTl/kVZraOnEvk+IWLuJlNtKwSkOlaxlS/g0qmRERERKSIUjLlRP1bhOJqNth0LJrtJ2Ly3pFhQMM+MHQj1LgLrOn2tVRrPsy3WLOy8tKoVLNKJfByz1zLxFEeXRX9RERERKSIUjLlREG+HnSvXwbg+kanMvgEQ++Z0Pp/9s8rxsDyMQW2J9XK/fZkqm31KzcR1jQ/ERERESnqlEw52aDbKwGwaFcEJ6MvXn+HhgF3vAIdx9o/r/0QFv0PrNbr7/tfElLS2Xj0AnDleimAqpdGps7EJhOXnJavzxYREREpCtq2bcuzzz7r+BwaGsqECROueo9hGMyfP/+6n51f/dzqlEw5Wa0yvrSsUhKL1caMdcfyr+OWz8BdHwEGbPwCfhmar5X+1h06R5rFRmhJTyoFel9x3a+YK0G+lyr6aaqfiIiIFCHdu3enc+fOWV5bs2YNhmHwzz//5LrfTZs28fjjj19veJm88cYbNGjQ4IrzZ86coUuXLvn6rP+aMWMG/v7+BfoMZ1MydQMY1Mo+OvX9phP5O4rT+FHo+QUYZtgxG34cCOkp+dJ1xnqprKb4ZVARChERESmKHnvsMZYtW8bJkyevuDZ9+nQaN25MvXr1ct1vYGAgnp6e+RHiNQUHB+Pu7l4ozyrKlEzdANpUDaRKKW8SUtL5YdOJ/O283gPQ+1swu8HeX+G7hyD1+qYT2mw2x3qpdjWunUypCIWIiIjkmM0GqYnOOXK4zvyuu+4iMDCQGTNmZDqfkJDA3Llzeeyxxzh//jwPPfQQZcuWxdPTk7p16/Ldd99dtd//TvM7ePAgrVu3xsPDg1q1arFs2bIr7nnxxRepVq0anp6eVKpUiddee420NPsv52fMmMGYMWPYsWMHhmFgGIYj5v9O89u5cyd33HEHxYoVo2TJkjz++OMkJFz+GW7AgAH06NGD999/n9KlS1OyZEmGDh3qeFZeHD9+nHvuuQdvb298fX154IEHiIy8vGXQjh07aNeuHT4+Pvj6+hIWFsbmzZsBCA8Pp3v37hQvXhwvLy9q167NwoUL8xxLXrlcu4kUNJPJYNDtFXlp3k6mrzvGgBahuJjzMc+t0Q0e/gG+fxgOr4CZveDh7+2l1PNgz5k4IuNSKOZqplnFEtm2y68iFHtOx3EhMZXbqwZcu7GIiIjc3NIuwrgyznn2y6fBzeuazVxcXOjXrx8zZszglVdewTAMAObOnYvFYuGhhx4iISGBsLAwXnzxRXx9fVmwYAGPPPIIlStXpmnTptd8htVqpWfPngQFBfH3338TGxubaX1VBh8fH2bMmEGZMmXYuXMngwcPxsfHh//973/07t2bXbt2sXjxYpYvXw6An9+VP/8lJibSqVMnmjdvzqZNm4iKimLQoEEMGzYsU8K4cuVKSpcuzcqVKzl06BC9e/emQYMGDB48+Jrvk9X7ZSRSq1evJj09naFDh9K7d29WrVoFQJ8+fWjYsCGff/45ZrOZ7du34+rqCsDQoUNJTU3lzz//xMvLiz179uDtfeXSk4KmZOoG0aNhWd5bsp9TMUks3BXB3fXz+S+Ryu3gkfkw6344vh6+vtu+P5Vn9slQdlbtPwtAyyol8XA1Z9uuqmNkKu/JVLrFSr9pf3MhMZVVI9tRvmThDH2LiIiIXM2jjz7Ke++9x+rVq2nbti1gn+LXq1cv/Pz88PPzY+TIkY72Tz/9NEuWLOGHH37IUTK1fPly9u3bx5IlSyhTxv5z4bhx465Y5/Tqq686vg4NDWXkyJF8//33/O9//6NYsWJ4e3vj4uJCcHBwts+aPXs2ycnJfPPNN3h52ZPJSZMm0b17d9555x2CgoIAKF68OJMmTcJsNlOjRg26devGihUr8pRMrVixgp07d3L06FFCQkIA+Oabb6hduzabNm2iSZMmHD9+nBdeeIEaNWoAULVqVcf9x48fp1evXtStWxeASpUq5TqG/KBk6gbh4WrmkeYVmLD8IF+uOUL3eqUdv+XIN+WbwYDf4Nt77Zv7Tu8K/ebbS6rnQsZ6qatN8QOoWsr+24Go+BRiL6bh5+ma65B3norlXEIqAHvOxCqZEhERKepcPe0jRM56dg7VqFGDFi1aMG3aNNq2bcuhQ4dYs2YNY8faKypbLBbGjRvHDz/8wKlTp0hNTSUlJSXHa6L27t1LSEiII5ECaN68+RXt5syZwyeffMLhw4dJSEggPT0dX1/fHL9HxrPq16/vSKQAWrZsidVqZf/+/Y5kqnbt2pjNl3+RXrp0aXbu3JmrZ/37mSEhIY5ECqBWrVr4+/uzd+9emjRpwogRIxg0aBDffvstHTp04P7776dy5coADB8+nCFDhrB06VI6dOhAr1698rRO7XppzdQN5JHbKuDuYuKfk7FsOhZdMA8pXR8GLgKfMnB2L0zrBBdyvsdVdGIqW4/bY7ta8QkAHw9XyvoXA+BAVN5Gp9YfPu/4+lCU1l6JiIgUeYZhn2rnjCOXv8h+7LHH+Omnn4iPj2f69OlUrlyZNm3aAPDee+/x8ccf8+KLL7Jy5Uq2b99Op06dSE1Nzbc/qg0bNtCnTx+6du3K77//zrZt23jllVfy9Rn/ljHFLoNhGFjzefudf3vjjTfYvXs33bp1448//qBWrVr8/PPPAAwaNIgjR47wyCOPsHPnTho3bszEiRMLLJbsKJm6gZT0dqdno3JAPm3im53A6vDoIigeCtHH4KtOcCZn5Tv/PHgWqw2qB/k4EqWrqXpp3dT+iLwlU+sOnXN8ffhsYp76EBERESkIDzzwACaTidmzZ/PNN9/w6KOPOmYWrVu3jnvuuYe+fftSv359KlWqxIEDB3Lcd82aNTlx4gRnzpxxnPvrr78ytVm/fj0VKlTglVdeoXHjxlStWpXw8PBMbdzc3LBYLNd81o4dO0hMvPyz1rp16zCZTFSvXj3HMedGxvudOHG5+NqePXuIiYmhVq1ajnPVqlXjueeeY+nSpfTs2ZPp06c7roWEhPDkk08yb948nn/+eaZOnVogsV6NkqkbzGO3VwRg2d5Ijp4rwOSheCg8ugSC6kJilH3K39E117wtY73Utab4Zbie8ujJaRY2h18eodPIlIiIiNxIvL296d27N6NGjeLMmTMMGDDAca1q1aosW7aM9evXs3fvXp544olMlequpUOHDlSrVo3+/fuzY8cO1qxZwyuvvJKpTdWqVTl+/Djff/89hw8f5pNPPnGM3GQIDQ3l6NGjbN++nXPnzpGScuU2OX369MHDw4P+/fuza9cuVq5cydNPP80jjzzimOKXVxaLhe3bt2c69u7dS4cOHahbty59+vRh69atbNy4kX79+tGmTRsaN25MUlISw4YNY9WqVYSHh7Nu3To2bdpEzZo1AXj22WdZsmQJR48eZevWraxcudJxrTApmbrBVCnlzR01SmGzwbS1Rwv2YT7BMHABVLgdUuNhZk/Y82u2zS1WG6sySqJXD8zRIzLWTeWlPPrmY9Gkpltxc7F/mx4+m4DVmrOSpSIiIiKF4bHHHiM6OppOnTplWt/06quv0qhRIzp16kTbtm0JDg6mR48eOe7XZDLx888/k5SURNOmTRk0aBBvv/12pjZ33303zz33HMOGDaNBgwasX7+e1157LVObXr160blzZ9q1a0dgYGCW5dk9PT1ZsmQJFy5coEmTJtx33320b9+eSZMm5e4PIwsJCQk0bNgw09G9e3cMw+CXX36hePHitG7dmg4dOlCpUiXmzJkDgNls5vz58/Tr149q1arxwAMP0KVLF8aMGQPYk7ShQ4dSs2ZNOnfuTLVq1fjss8+uO97cMmy2HBbULyLi4uLw8/MjNjY214vzCsv6Q+d4+Mu/8XA18deo9vh7uhXsA9OS4afHYN/vYJig24fQeOAVzbYej6bnZ+vx8XBh62sdcc1B+fZ/TsZw96R1BHi7sfnVjrkK653F+/h81WHurl+GhTvPkG61se6lO3I0vVBERERuDsnJyRw9epSKFSvi4eHh7HCkCLra99j15gYamboBNa9cklqlfUlOszLr7+MF/0BXD3jgG2jUH2xW+P1ZWP3uFRvXrbpUxa91tcAcJVJgH2kDOJeQyvmEK4eVryZjvVSbaoFUuFTFT1P9RERERORGoWTqBmQYBoNb29dOzVh/jJT0qy8azBcmM3T/GFq/YP+88m1Y+AJYLz/7D8cUv5ytlwLwdHMhpMSlin65mOoXezGNnadiAWhZJcCRlB1WMiUiIiIiNwglUzeobnXLEOTrztn4FH7bcebaN+QHw4A7XoUu7wIGbJpqn/6XnkJUXDK7TsUB9pGi3KhW6lIRilyUR99w5Bw2G1QO9CLYz8ORTB06q2RKRERERG4MSqZuUG4uJga0sI9OfbnmCIW6tK3ZE3DfV2Byhd0/w6z7WbvnGAD1y/kR6OOeq+6qXqrodyAXFf3WHbLvL9WySgBwebqgpvmJiIiIyI1CydQN7OGm5fF0M7MvIt6RXBSaOr2gzw/g6gVHVxO28hFKEnvNjXqzUj049xX91h22r5fKSKYqB2qan4iISFF2i9VEk0JUkN9bSqZuYH6erjzQOASAqQW5iW92Kt8BA37H5lmSCikHmOH2Du0re+W6m6qlLu81lZNv5jOxSRw5m4jJgNsqlbSHcimZOp+YSnRiwezqLSIiIoXP1dUVgIsXLzo5EimqUlPtPzuazeZ879sl33uUfPVoy4p8veEYqw+c5UBkvGMT3EJTthHbO8wh5Jee1DUdw7b+WajwHZhz/q1TpZQ3JgOiL6ZxNiGFUj5XL3uaMQpXt6wffsXsf8F6ubtQxs+D07HJHD6bQGOvEnl+JREREblxmM1m/P39iYqyF7ry9PTEMAwnRyVFhdVq5ezZs3h6euLikv+pj5KpG1z5kp50qhXM4t0RfLXmKO/cV6/QY1hw2ovNqSP5weNt3A4thQUj7JX/cvgXnYermfIlPDl2/iIHIxOumUytP5R5il+GyqW8OR2bzKGoBBqHKpkSEREpKoKDgwEcCZVIfjKZTJQvX75AknQlUzeBwa0rsnh3BD9vO0Xf2ypQt5xfoT3bZrOxdE8kx21V2NX8QxpteBq2fg3+IZfLqOdA1SAfjp2/yIHI+CuSpP8+b202yVSVUt6sOXhORShERESKGMMwKF26NKVKlSItLc3Z4UgR4+bmhslUMKublEzdBMIqlKBjrSCW7YlkyKwt/Dbsdop7uRXKsw9EJnD8wkXcXExUb/Mg+CfBwpHwx1vgVx7q985RP9WDfFi2J/KaRSgOn00gKj4FdxcTYRWKZ7qm8ugiIiJFm9lsLpB1LSIF5YYoQPHpp58SGhqKh4cHzZo1Y+PGjdm2bdu2LYZhXHF069atECMufO/fX58KJT05GZ3EM3O2Y7EWTsWbpbsjAGhVJQAvdxdoOhhaDLdf/GUoHFmdo36qBtkToYPXKI+esV6qcWhxPFwz/2WaUYRCI1MiIiIiciNwejI1Z84cRowYweuvv87WrVupX78+nTp1ynbO7Lx58zhz5ozj2LVrF2azmfvvv7+QIy9cfsVcmdw3DA9XE38eOMvHKw4WynOX7Y0EoGOtoMsnO4yB2j3BmgZz+kLk7mv2k1E4Y/81KvplTPFrUfnKqYAZI1OnYpJISrXk+B1ERERERAqC05OpDz/8kMGDBzNw4EBq1arF5MmT8fT0ZNq0aVm2L1GiBMHBwY5j2bJleHp6FvlkCqBmaV/G96wLwCcrDrLiUqJTUE7HJPHPyVgMA9rX/FcyZTJBj8+hQktIiYNZ90Psqav2VSnQC7PJID45nci4lCzbpFus/HXEPjJ1exbrqkp6ueHv6YrNBkfOaXRKRERERJzLqclUamoqW7ZsoUOHDo5zJpOJDh06sGHDhhz18dVXX/Hggw/i5ZX1/kcpKSnExcVlOm5m9zYsR//mFQB4bs52ws8nFtizll9K1sLKFyfQxz3zRVcP6D0TAqpB3CmY/QAkZ/9n6+5ipkJJTwAOZDPVb+epWOKT0/H1cKFO2SuLbBiGQRVN9RMRERGRG4RTk6lz585hsVgICgrKdD4oKIiIiIhr3r9x40Z27drFoEGDsm0zfvx4/Pz8HEdISMh1x+1sr3SrRaPy/sQlp/PkzK0FNuVt2Z4spvj9m2cJ6PMjeJWCyF3wwyNgyb4CT/VLU/2yS6bWH7aPSt1WqSRmU9alKzOm+h1WMiUiIiIiTub0aX7X46uvvqJu3bo0bdo02zajRo0iNjbWcZw4caIQIywYbi4mPusTRoC3G3vPxPHKzzuvug4pL2KT0thwKbm5s3Zw9g2LV4A+P4CrFxxZBb8Oh2xiqXopmTqYTUW/dZfWS91eNfvS6Y4iFKroJyIiIiJO5tRkKiAgALPZTGRk5rU/kZGRjs3bspOYmMj333/PY489dtV27u7u+Pr6ZjqKgmA/DyY+1AizyWDetlPM/Cs8X/tftT+KdKuNqqW8qRiQ9RRKhzIN4f4ZYJhhx2xYNT7LZtUuVfTbn8XIVHKahc3h0UDWxScyOMqja2RKRERERJzMqcmUm5sbYWFhrFixwnHOarWyYsUKmjdvftV7586dS0pKCn379i3oMG9YzSuX5KXONQAY+/setlxKRvLD0mtN8fuvandCtw/sX69+B9Z9cmWTSyNTh6ISrhhJ23wsmtR0K8G+HlQOzD55y0imjp27SLrFmrPYREREREQKgNOn+Y0YMYKpU6fy9ddfs3fvXoYMGUJiYiIDBw4EoF+/fowaNeqK+7766it69OhByZIlCzvkG8qgVhXpWjeYNIuNp2Zt4Wx81pXyciMl3cKqffbS9Fed4vdfjQdC25ftXy97DdZPzHQ5tKQXLiaDhJR0TscmZ7q27vClkuhVSmIYWa+XAijrXwwPVxOpFisnopNyHpuIiIiISD5zejLVu3dv3n//fUaPHk2DBg3Yvn07ixcvdhSlOH78OGfOnMl0z/79+1m7du01p/jdCgzD4N376lOllDeRcSk8/d3W6x6xWX/4PImpFoJ83amXRVW9q2r7IrR50f710ldhw6eOS24uJipdGnX6bxGKjPVSLa8yxQ/AZDKoFKCpfiIiIiLifE5PpgCGDRtGeHg4KSkp/P333zRr1sxxbdWqVcyYMSNT++rVq2Oz2ejYsWMhR3pj8nZ3YXLfMLzczPx15ALvLdl/Xf1lVPHrUDMIUzZV9a6q7Sho/T/710tehr8+d1zKKEJxIOJyMhV7MY2dp2IBaJnF/lL/pXVTIiIiInIjuCGSKbl+VUp58/799QGY8ucRlu6+dmn5rFitNkcylaspfv9mGNDuZWg10v558Uvw12QAqpXKKI9+ORHacOQ8NhtUDvQi2M/jmt1X1l5TIiIiInIDUDJVhHSpW5rBrSoCMOa3PSSn5X7/qe0nYzgbn4KPuwvNK13HejTDgDtehdtH2D8vfhH+/sJR0e9g1OWRKccUvxyMSsG/9ppSeXQRERERcSIlU0XMiI7VCfb14FRMEt9sOJbr+zNGpdpUD8TN5Tq/PQwD2o+G25+zf170Ao2jfgLse01ZrfaKfhnFJ3KdTGVRFVBEREREpLAomSpiirmZef7OagBM+uMQ0Ympubo/Y3pgnqf4/ZdhQPvXoeUzAASueYX+rstJSrNwKiaJM7FJHDmbiMmA23I4EhYa4InJgPiUdKLyoXqhiIiIiEheKJkqgno2KkeNYB/iktOZ+MehHN93+GwCh88m4mo2aFs9MP8CMgzoMAZaPA3AGPM0+piXsz8innWHzgNQt6wffsVcc9Sdu4uZCiXtVQG1bkpEREREnEXJVBFkNhm83LUmAN/+dYzw84k5ui9jit9tlUri65GzxCbHDAM6vgnNhwHwtus0XLZ/zfpcrpfKkLGxr5IpEREREXEWJVNFVOtqgbSuFkiaxca7OSyVnu9T/P7LMODOt9he9mEA2h54m5IHvgfykEypPLqIiIiIOJmSqSJsVJcaGAYs+OcMW49HX7VtVHwy207EANCxZlDBBWUYRDYfzbT0zvYY0yfzoOufhFUonqtuqgSqop+IiIiIOJeSqSKsZmlf7mtUDoBxC/ZetfLdir1R2GxQv5xfjvZ6uh7Vg30Zm/4IM9LvxGTYGGeegsfen3LVhzbuFRERERFnUzJVxD1/Z3U8XE1sDo9myVU28i3wKX7/ElLCE3cXM2+k92dWentM2ODnJ2DXvBz3kTHNLyo+hbjktIIKVUREREQkW0qmirhgPw8Gt6oEwDuL95NmsV7RJiEl3VFVr2OtApzid4nZZFwaWTJ4NX0g56s9ADYr/DQI9vyaoz58PVwJ8nUHNDolIiIiIs6hZOoW8ESbygR4u3H0XCKz/z5+xfU/D5wl1WIltKQnVS+N+BS0akE+APh4uOH/wOdQ70GwWeDHgbBvYY76qByoqX4iIiIi4jxKpm4B3u4uPNvBvpHvhOUHrpgW9+8pfoZhFEpMtcv4AvYqfmYXF+jxGdS5D6zp8EM/OLD0mn1krJtSEQoRERERcQYlU7eIB5uEUDnQi+iLaXy+6rDjfJrFyh/7ooDCmeKXoe9tFXi5aw1Gd69lP2Eyw71ToNY9YE2DOX3h0Iqr9uFIpjQyJSIiIiJOoGTqFuFiNjGqi30j32lrj3IqJgmAjUcvEJecTkkvNxqVz1158uvh4Wrm8daVKe1X7PJJswv0+gpq3AWWFPj+YTiyOts+qmian4iIiIg4kZKpW0j7mqVoVrEEKelWPri0kW/GFL8ONYMwmwpnit9VmV3hvulQrTOkJ8N3D8KxdVk2zRiZOn7hIslplsKMUkREREREydStxDAMXulmH536efspdp2KZdmeSKBwp/hdk4sbPPANVOkAaRdh1v1w/O8rmgX6uOPj4YLVBsfOJzohUBERERG5lSmZusXUK+fPPQ3KYLPBsNlbOR2bTDFXM7dXDXB2aJm5uEPvmVCpLaQlwsxeV4xQGYbhqOh3OErJlIiIiIgULiVTt6CRd1bHzWzi2PmLALSpFoiHq9nJUWXBtRg8+B2EtoLUeJjZEw4sydQkY6qf1k2JiIiISGFTMnULCinhycCWoY7PN9QUv/9y84Q+c6FaF/saqu8fhn/mOi47kimVRxcRERGRQqZk6hb1VLsqlPJxx6+YK+1rlnJ2OFfnWgx6fwv1etv3oZo3GDZOBQq+ot/Ok7HUfG0xE1ccLJD+RUREROTm5eLsAMQ5/Iq5suiZVqRbbfh7ujk7nGszu0KPyeDhDxunwMKRkBRDlVpDADhyNgGL1ZbvFQlnbwwnKc3Ct3+FM+yOKoW2qbGIiIiI3Pg0MnULK+ntTpCvh7PDyDmTCbq8A21esn9e+RblN7+NuxlS0q2cik7K18dZrTaW77VvaBwVn8Lu03H52r+IiIiI3NyUTMnNxTCg3Sjo/H8AmP7+jImeX2HGwuF8Xje1/WQMZ+NTHJ9X7Y/K1/5FRERE5OamZEpuTrcNgR6fg2HmzrQVfOr6CUfPnM/XR2TsweXpZq90uHL/2XztX0RERERubkqm5ObV4GF44BvSDVc6mzfRavNQSInPt+6X7o4A4Jn2VQHYdjya6MTUfOtfRERERG5uSqbk5lbzLja2/IIEmwdVE7fAN/fAxQvX3e2RswkcPpuIi8ngwablqRHsg9UGfx7U6JSIiIiI2CmZkpuef60OPJz6CtH4wKktMKMbxEdeV58ZU/yaVy6JXzFX2tWwl4//Y5/WTYmIiIiInZIpuelVCvRiJ5W5P+U1LF5BELUHpneBmBN57jMjmcrY0LhddXsytfrAWSxW2/UHLSIiIiI3PSVTctPzcDVTrngxDtnK8c+d34Nfebhw2J5QnT+c6/7Oxqew5Xg0AB1q2pOpRuX98fVwIeZiGttPxORn+CIiIiJyk1IyJUVClUBvAHYnlYRHF0GJyhB7AqZ3hah9uerrj32R2GxQp6wvZfyLAeBiNtG6WiAAKzXVT0RERERQMiVFRJVS9mTqUFQC+JWDgYugVC1IiIAZXeHMjhz3lTHF785awZnOZ0z1W6n9pkREREQEJVNSRGQkU46Ne32CYMACKNMQLp6HGd3hxMZr9nMxNZ01B88Bl9dLZWhTPRDDgN2n44iMS87fFxARERGRm46SKSkSKgf+a2Qqg2cJ6PcLlG8OKbHwTQ84+udV+1lz8Bwp6VbKFS9GjWCfTNcCvN2pV84fgFUanRIRERG55SmZkiIhY2TqTGwyCSnply94+EHfn6BSW0hLhFn3w4Gl2fazdPflKn6GYVxxvV31jHVT2m9KRERE5FanZEqKBH9PNwK83QD7hruZuHnBQ3OgWhdIT4bvH4Y9v1zRR7rFyh/7sl4vleGOS/tNrT10jtR0az6+gYiIiIjcbJRMSZGR5VS/DK4e0PtbqN0TrGkwdwDs+D5Tky3h0URfTMPf05UmocWzfEadMn4EeLuTkJLO5mMX8vsVREREROQmomRKioxMFf2yYnaFXl9Cgz5gs8LPT8DGqY7LGVX87qheChdz1v9rmEwGbTOm+mndlIiIiMgtTcmUFBnVLxWMWLonkpR0S9aNTGa4exI0fdz+eeFIWPMBNpuNpXsur5e6mowS6X9ovykRERGRW5qSKSky7q5fhgBvNw5FJTB51ZHsG5pM0OVdaP2C/fOKsVz45WWOX0jEzeXy5rzZub1qAGaTweGziRw/fzEf30BEREREbiZKpqTI8Pd04/XutQGYtPIgByPjs29sGHDHq9DxTQBKbv+Mt12m0apycbzcXa76HL9irjSuYF9Tpal+IiIiIrcuJVNSpNxVrzTta5QizWLjpXk7sVptV7+h5XDo/jFWDPq4rOC11AlgSbvmc9pdquqnZEpERETk1qVkSooUwzB4s0cdvNzMbAmPZtbf4de8J6LKgwxPHUaazUzomUUwpy+kJV31nox1UxsOnycpNZv1WVdxzSRPRERERG54SqakyCnjX4wXu9QA4J3F+zkdc/XEaNneSH63Nuf//EeDiwccWGzf3Dcl+2mC1YK8KetfjJR0KxuOnMtVfOsPnaPhm8v4cNmBXN0nIiIiIjcWJVNSJPVtVoFG5f1JSEnntfm7sNmyHwnKKIke0LA79J0Hbj5wbA18fTdczHovKcP4V4n0fWdzHNeJCxd5avZWYpPSmP13uEaoRERERG5iSqakSDKZDN7pVQ9Xs8GKfVEs2Hkmy3bxyWlsOGwfWepYKwhCW8KA36BYCTi9FaZ3gbis773jX+umrpasZUhKtfDEt1uIuWhfk3UuIZU9Z+Ly8noiIiIicgNwejL16aefEhoaioeHB82aNWPjxo1XbR8TE8PQoUMpXbo07u7uVKtWjYULFxZStHIzqRrkw9B2VQB449fdxFxMvaLN6gNnSbPYqBTg5dj0lzINYeAi8CkNZ/fB9M5w4egV9zavXBI3FxMno5Oy3yj4EpvNxkvz/mHPmThKerkRdqka4OoDOR/VEhEREZEbi1OTqTlz5jBixAhef/11tm7dSv369enUqRNRUVlXSEtNTaVjx44cO3aMH3/8kf379zN16lTKli1byJHLzWJI28pULeXNuYRU3l6w94rrS3dns1FvqRrw6GIoXhGij8FXd8KprZmaeLq5cFulksC1q/p9tfYov2w/jYvJ4LM+jejR0P49q2RKRERE5Obl1GTqww8/ZPDgwQwcOJBatWoxefJkPD09mTZtWpbtp02bxoULF5g/fz4tW7YkNDSUNm3aUL9+/UKOXG4W7i5m/q9XPQwD5m45ydqDl4tFpFmsjiToztpBV95cPNSeUAXVhcQomNENDizJ1OSOS+um/tiXfTK1/tA5xi/aB8Cr3WrSrFJJ2lS137c1PJq45GuXYhcRERGRG4/TkqnU1FS2bNlChw4dLgdjMtGhQwc2bNiQ5T2//vorzZs3Z+jQoQQFBVGnTh3GjRuHxZJ9aeqUlBTi4uIyHXJrCatQnH63VQDg5Z93OkqZ/33kAvHJ6QR4u9EgpHjWN/sEw8CFUPkOSLsI3z0Im6c7Lre9VCJ987Gsk6KT0RcZOnsrFquNXo3K0b9FKADlS3pSKcCLdKuN9YfO5+PbioiIiEhhcVoyde7cOSwWC0FBmUcEgoKCiIiIyPKeI0eO8OOPP2KxWFi4cCGvvfYaH3zwAW+99Va2zxk/fjx+fn6OIyQkJF/fQ24OL3SuQWk/D45fuMiE5faS5Mv22L/P2tcIwmwysr/Zwxce/gEa9AWbFX5/FpaPAauV0AAvR1K07mDmEukZBSeiL6ZRt6wfb99bB8O4/JzW1eyjU38e1FQ/ERERkZuR0wtQ5IbVaqVUqVJ88cUXhIWF0bt3b1555RUmT56c7T2jRo0iNjbWcZw4caIQI5Ybhbe7C2/1qAPA1DVH2Hky1lES/Yr1Ulkxu8I9k6DtKPvntR/Cz09AeirtLlX1+/dUP5vNxqh5/7D7tL3gxJRHwvBwNWfqss2lZGr1/rM5qgYoIiIiIjcWpyVTAQEBmM1mIiMjM52PjIwkODg4y3tKly5NtWrVMJsv/1Bas2ZNIiIiSE29slIbgLu7O76+vpkOuTW1rxlE9/plsNrg8W83czo2mWKuZm6vGpCzDgwD2r4E93wGJhfY+QPM7EmHih4ArDpw1rFv1LR1x5i//TRmk8GkhxtRxr/YFd01q1QCN7OJUzFJHD6bmG/vKSIiIiKFw2nJlJubG2FhYaxYscJxzmq1smLFCpo3b57lPS1btuTQoUNYrVbHuQMHDlC6dGnc3NwKPGa5+b3evRb+nq6ciU0GoHW1gCtGjK6pYR/7tL9Lm/s2W/UQVdyiORufwp4zcaw/fI5xC+2VA1/pWpPmlUtm2Y2nmwtNK5YA4E9V9RMRERG56Th1mt+IESOYOnUqX3/9NXv37mXIkCEkJiYycOBAAPr168eoUaMc7YcMGcKFCxd45plnOHDgAAsWLGDcuHEMHTrUWa8gN5kAb3de7VbL8bljraxHQa+pSnt7YQqf0pjO7uNH19HUMo4x869whs3ehsVqo2fDsgxsGXrVbhxT/a4zmYpOTOXJb7fw+z+nr6sfEREREck5pyZTvXv35v3332f06NE0aNCA7du3s3jxYkdRiuPHj3PmzBlH+5CQEJYsWcKmTZuoV68ew4cP55lnnuGll15y1ivITahXo7L0bFiWOmV9sy6JnlOl68Gg5VCqFv6W8/zgNpbTW37nQmIqdcr6Mq5n3UwFJ7KSUYTiryPnSU7LvirltUxbd5TFuyOYsPxgnvsQERERkdwxbLfYyve4uDj8/PyIjY3V+inJH0kxpMx+GPcT60i3mfjU9DC9nn6XciW8rnmrzWaj+fg/iIhL5ptHmzqSq9xIt1hp8X9/EBWfgsmAPWM7537qooiIiMgt6Hpzg5uqmp/IDamYP+7957O6WEdcDCvP2GZSbvFjkBR9zVsNw7juqX5/7IsiKj4FAKsN9kfE56kfEREREckdJVMi+cHFjWbPfU9Cx/fA7AYHFsGU1nBqyzVvbX2dydR3G49n+rznjDamFhERESkMSqZE8omHmwveLR+Hx5ZB8VCIOQ7TOsPGqXCV2bS3VwnAZMChqAROxSTl6pmnYpJYdSkJ63Rp/dee00qmRERERAqDkimR/FamATy+GmrcBZZUWDgSfnwUUrKefufn6UrD8sWB3JdIn7PxODYbtKxSkq51SwMamRIREREpLEqmRApCMX/oPRM6jbNv8Lt7HnzRFiJ3Z9m8ddVLU/325zyZSrdYmbP5BAAPNS1PrdL2RZP7zsQ5Ng8WERERkYKjZEqkoBgGNB8KAxeBb1k4fwimtodts65o2qa6PZlad+gcaRbrFdezsnL/WSLjUijp5cadtYKpGOCFu4uJxFQLxy9czNdXEREREZErKZkSKWghTeGJNVC5PaQnwS9PwfyhkHo54alb1g9/T1fiU9LZfiImR91mFJ64L6wcbi4mXMwmagT7AJrqJyIiIlIYlEyJFAavktDnR2j3Khgm2D4Tpt4BUfsAMJsMWuViqt+pmCRW7Y8C4MGm5R3na5WxT/VTEQoRERGRgqdkSqSwmEzQ5gV4ZD54lYKze+3rqLZ+CzabY7+pPw9eO5mas+kEVhu0qFySigGXNwfOWDelkSkRERGRgqdkSqSwVWoDQ9ZBpXb2aX+/DoN5j9OmggcA/5yM5VxCSra3p1us/LDpcuGJf6tZWiNTIiIiIoVFyZSIM3iXgr7zoP1oMMyw8wcCZ99Jt8BzAKw9eC7bW1ftP0tEXDIlvNy489LeUhlqXEqmIuKSOX+VhExERERErp+SKRFnMZmg1fMwYIG92t+Fw3yc8DyPmJfy56X1UFn5d+EJdxdzpmve7i6ElvQEYO+ZrPe1EhEREZH8oWRKxNkqNIcn10K1LrjY0njTdQZ37f8f1sToK5qejkliZUbhiSYhWXbnKEJxJrbgYhYRERERJVMiNwTPEvDQd6R3HEeazcwdto2kf347nNiUqVlG4YnmlUpSKdA7y65qad2UiIiISKFQMiVyozAMXFoO5f/KTiTcWgq3hJMwvTOs+xisVnvhic2XCk80K59tN5dHppRMiYiIiBQkJVMiN5jQui25K3Uc6z1agzUdlo2GOX1Yt+swZ2KTKe7pSqf/FJ74t1ql/QA4fDaR5DRLYYUtIiIicstRMiVyg2lTrRTxeNIv7kmSO70PZjfYv5Aav91NTSM8y8IT/xbk604JLzcsVhsHIxMKMXIRERGRW4uSKZEbTPmSnlQM8CLdCqt9u8OjS0j3KUdQ+ml+dhvNYN+/rnq/YRj/2rxXRShERERECoqSKZEbUOuqAQCsPnAWyjbiy1rTWWWpj4eRRqkVz8Fvz0J69vtIOdZNqQiFiIiISIFRMiVyA2pTPRCA1fvPYrHa+Hp7PAPTXmBfjaGAAVumw7ROEHM8y/trlvYBVIRCREREpCApmRK5Ad1WqSRuZhOnYpKYtvYoZ2KT8fd0J7TXm9DnRyhWHE5vgymt4dDyK+7PKEKx90w8VqutsMMXERERuSUomRK5AXm6udCkYnEA3lu6H4Bejcrh4WqGqh3giT+hTENIioaZ98Gqd8BqddxfKdALNxcTCSnpnIi+6JR3EBERESnqlEyJ3KDaVLNP9UtNtydJDzb9195S/uVh4GIIGwjYYNU4mP0AXLwAgKvZRPWgS1P9tG5KREREpEAomRK5QbW+lEwBNKtYgiqlvDM3cPWA7hOgx+fg4gGHlsGnzWDXT2Cz/auin5IpERERkYKgZErkBlU9yIfSfh4APNysfPYNGzwMg5ZDQDVIjIIfH4VZ99OkeDygkSkRERGRguLi7ABEJGuGYTDxoYb8czKW7vXKXL1xcF14ci2snQBr3odDy7j32Fr2m+9l0el7CyVeERERkVuNYbPZbqlSX3Fxcfj5+REbG4uvr6+zwxHJf+cO2vehCl8LwC5rKOX7T8W3clPnxgWcjU/h2w3HaFapJC2rBDg7HBEREbnFXW9uoGl+IkVNQFUY8DvcPYk4vKljOobPzE6w6CVIiXdKSFarje83HqfDh6v55I9DDP5mM2dik5wSi4iIiEh+UTIlUhQZBjR6hLdCv+ZnS0sMmxX+/hw+vQ32LyrUUA5FxfPgF3/x0rydxCal4WIyuJhq4a0Fews1DhEREZH8pmRKpAgrF1KB59KGMiXkPfCvAHEn4bsH4Yd+jjLqBSU5zcKHyw7Q5eM1bDx2gWKuZl7tVpOfn2qJyYAF/5xh7cFzBRqDiIiISEFSMiVShGWUR/85vgY89Re0fBYMM+z5Baa0gVNbC+S5Gw6fp+vHa/hkxUHSLDbuqFGKZSNaM6hVJeqW86Nf81AARv+6i5R0S4HEICIiIlLQlEyJFGG1ytiTqUNRCSQb7tBxDDy+EopXhNjjMK0TbJ4O+VSHJjoxlRfm7uChqX9x5FwigT7ufPpwI77q35hyxT0d7Z7rWI0Ab3eOnE3kq7VH8+XZIiIiIoVNyZRIEVbazwN/T1fSrTYORSVcOlkfHl8F1buCJRV+fxZ+GQppeS8IYbPZ+HnbSdp/uJq5W04C0KdZeZaPaEO3eqUxDCNTe79irrzctQYAE1cc4lSMilGIiIjIzUfJlEgRZhiGY6pfps17i/lD71nQ4Q0wTLB9FnzZES4cyVX/0YmpzFh3lG6frOW5OTu4kJhKtSBvfhrSnLfvrYtfMdds7723YVmahpYgKc3Cm7/tycPbiYiIiDiXkimRIs6RTJ2Jy3zBZILbn4NH5oNnAETuhCltr1ntL91iZeW+KJ6atYVm41bwxm972HMmDncXEy90qs7vT7cirEKJa8ZlGAZje9TGbDJYvDuCVfuj8viGIiIiIs7h4uwARKRgZaybyjQy9W+V2sCTa+CH/nByo73aX6vnod0rYDI7mh0+m8DczSf5edtJIuNSLvdf2pf7G5fjngZlKeHllqvYagT7MqBFKF+tPcobv+5m8bMl8XA1X/tGERERkRuAkimRIs6RTJ2Jw2q1YTIZVzbyLQMDFsCy1+DvybDmAzi5mYS7JvP74XTmbjnJlvBoR/Pinq7c06As9zcuR+0yftcV37MdqvLbjtMcO3+RqX8e4en2Va+rPxEREZHComRKpIirHOiNm9lEQko6J6OTKF/SM+uGLm7Q5R0o1wR+HQ5HV5M4sSU/pAxnq60aJgPaVi/F/WHluKNmKdxd8mcEycfDlVe61eSZ77czaeUhejQsS0iJbGIUERERuYFozZRIEedqNlE1yBvIYt1UVureh+Wx5Zw0lyOIC8xxf4tv6/3DXy/dwbQBTehSt3S+JVIZ7q5fhtsqlSAl3coYFaMQERGRm4SSKZFbQLZFKLIx41AxOiWOYSm34Uo6rQ78H6VWPAupFwskPsMwePOeOriYDJbvjWTF3sgCeY6IiIhIflIyJXILuGYRin85ceEi7y/ZTyLFON/lC+j4pr18+j/fw1e5L5+eU1WDfHjs9ooAvPHbbpLTLAXyHBEREZH8omRK5BaQMTK19xojUzabjVfm7yIpzUKziiXo3aQ8tBwO/X4Br0CI3HWpfPriAolzePuqBPt6cOJCEp+vOlwgzxARERHJL0qmRG4BNS+NTJ2KSSLmYmq27eZvP8WfB87i5mJifM+6lyv/VWwNj6+2F6dIiYXvesPKcWDN39EjL3cXXrurFgCfrz5M+PnEfO1fREREJD8pmRK5Bfh6uBJSohiQ/bqp8wkpjL1U/OGZ9lWpFOiduYFfWRiwEJoMtn9e/Q7MfgAuXsjXWLvWDeb2KgGkplt549fd2Gy2fO1fREREJL8omRK5RTiKUGSzburN3/cQfTGNGsE+PN66UtaduLhBt/fh3ingUgwOLYcv2sDp7fkWp2EYjLmnNq5mg5X7z7L20Ll861tEREQkPymZErlF1Cpt31w3q5GplfujmL/9NCYD3ulVD1fzNf5qqP8gDFoGxUMh5jhM6wTbZuZbrJUDvenTrAIA324Iz7d+RURERPLTDZFMffrpp4SGhuLh4UGzZs3YuHFjtm1nzJiBYRiZDg8Pj0KMVuTmlF1Fv8SUdF79eRcAj7asSP0Q/5x1GFwXHl8F1TpDejL8MhR+fDTfpv31aVYegBX7ooiMS86XPkVERETyk9OTqTlz5jBixAhef/11tm7dSv369enUqRNRUVHZ3uPr68uZM2ccR3i4fnMtci0ZydShqARS0i8Xjnh/6X5OxSRRrngxRtxZLXedFisOD34Hd7wKhhl2/QSfNYeDy6473qpBPjQJLY7FauOHTSeuuz8RERGR/Ob0ZOrDDz9k8ODBDBw4kFq1ajF58mQ8PT2ZNm1atvcYhkFwcLDjCAoKKsSIRW5OZfw88PVwId1q42BkAgDbjkczY/0xAMbdWxdPN5fcd2wyQesX7NP+AqpBQgTMug9+ewZSEq4r5ocvjU59v+kEFqsKUYiIiMiNxanJVGpqKlu2bKFDhw6OcyaTiQ4dOrBhw4Zs70tISKBChQqEhIRwzz33sHv37mzbpqSkEBcXl+kQuRUZhuEYndp7Jo7UdCsv/bQTmw16NipL62qB1/eAsmHwxJ9w21P2z1tmwOSWEJ79/8vX0qVOafyKuXIqJok/D5y9vvhERERE8plTk6lz585hsViuGFkKCgoiIiIiy3uqV6/OtGnT+OWXX5g5cyZWq5UWLVpw8uTJLNuPHz8ePz8/xxESEpLv7yFys/h3EYopqw+zPzKekl5uvNatVv48wLUYdB4P/X8DvxCIPgbTu8DS1yAt9+uePFzN9GpUDoDZG4/nT4wiIiIi+cTp0/xyq3nz5vTr148GDRrQpk0b5s2bR2BgIFOmTMmy/ahRo4iNjXUcJ05o7YXcujJGplbui2LiH4cAGN29FsW93PL3QRVbw5B10KAvYIP1n8DUdnDmn1x39XAz+y9A/tgXRUSsClGIiIjIjcOpyVRAQABms5nIyMhM5yMjIwkODs5RH66urjRs2JBDhw5led3d3R1fX99Mh8itKmOvqWPnL5JqsdK2eiB31y9TMA/z8IMen8KDs8ErEKL22BOqP98DS3qOu6lSyoemFUtgsdqYo0IUIiIicgNxajLl5uZGWFgYK1ascJyzWq2sWLGC5s2b56gPi8XCzp07KV26dEGFKVJkVCnljavZAMDTzcxbPepgGEbBPrRGN3jqL6hxF1jT4Y+37PtSncv6FyBZebipvRDFnE3HVYhCREREbhhOn+Y3YsQIpk6dytdff83evXsZMmQIiYmJDBw4EIB+/foxatQoR/uxY8eydOlSjhw5wtatW+nbty/h4eEMGjTIWa8gctNwczFRp6x93dTIO6tTrrhn4TzYKwB6z4R7p4C7H5zaDJNvh41TwWq95u2d6wRT3NOV07HJrD6Q/bYJIiIiIoUpD3WQ81fv3r05e/Yso0ePJiIiggYNGrB48WJHUYrjx49jMl3O+aKjoxk8eDAREREUL16csLAw1q9fT61a+bSAXqSI++iBBuw9E0fnOjmbSptvDAPqPwiht8P8p+Doalg4EvYtgHs+Bb+y2d6aUYjiy7VHmf33ce6ooe0QRERExPkMm812S82ZiYuLw8/Pj9jYWK2fEnEWqxU2TYVlr0N6kn20qtv7UPd+e9KVhUNRCXT4cDUmA9a9dAel/YoVctAiIiJS1FxvbpCnaX4nTpzIVIp848aNPPvss3zxxRd56U5EbjUmEzR7Ap5cY9+fKiUW5g2Guf0h8XyWt1Qp5U2ziiWw2lAhChEREbkh5CmZevjhh1m5ciUAERERdOzYkY0bN/LKK68wduzYfA1QRIqwgKrw6FJo9wqYXGDPL/B5cziwJMvmDzfLKERxgnTLtddaiYiIiBSkPCVTu3btomnTpgD88MMP1KlTh/Xr1zNr1ixmzJiRn/GJSFFndoE2/4NByyGgOiREwuwH4NenISU+U9OMQhRnYpNZfeCskwIWERERsctTMpWWloa7uzsAy5cv5+677wagRo0anDlzJv+iE5FbR5mG8MRqaD4MMGDrN/B5Szj+t6OJu4uZ+8LKATD77+NOClRERETELk/JVO3atZk8eTJr1qxh2bJldO7cGYDTp09TsmTJfA1QRG4hrsWg09vQ/zfwKw8x4TC9M6wc79jo96FLe06t3B/F6ZgkZ0YrIiIit7g8JVPvvPMOU6ZMoW3btjz00EPUr18fgF9//dUx/U9EJM8qtoIh66Beb7BZYfX/wYyuEH2MSoHe3FZJhShERETE+fJcGt1isRAXF0fx4sUd544dO4anpyelSpXKtwDzm0qji9xk/pkLC0ZAShy4+0K3D/jVdjvDv9tGsK8Ha19sh4vZ6fuPi4iIyE3IKaXRk5KSSElJcSRS4eHhTJgwgf3799/QiZSI3ITq3Q9ProWQ2+wJ1bzBdDs4mvKeaUTEJbNyvwpRiIiIiHPkKZm65557+OabbwCIiYmhWbNmfPDBB/To0YPPP/88XwMUEaF4BRiwANq+DIYZ8665/OryEo2MA3y3UYUoRERExDnylExt3bqVVq1aAfDjjz8SFBREeHg433zzDZ988km+BigiAthLqLd9ER5dDP4V8E89w1y3MdQ/9BmnLsRf+34RERGRfJanZOrixYv4+PgAsHTpUnr27InJZOK2224jPDw8XwMUEckkpKl92l+9BzEbNp5xmYcxvQtEH3N2ZCIiInKLyVMyVaVKFebPn8+JEydYsmQJd955JwBRUVEq6iAiBc/DF3pOYUvj94mzFaNM/E5sn98O27+DvNXUEREREcm1PCVTo0ePZuTIkYSGhtK0aVOaN28O2EepGjZsmK8Biohkp27nx3jY/AEbrdUxUuNh/pPw40BIinZ2aCIiInILyHNp9IiICM6cOUP9+vUxmew52caNG/H19aVGjRr5GmR+Uml0kaJl/KK9TF19iLcDlvHgxVkY1nTwLQv3ToaKrZ0dnoiIiNzArjc3yHMyleHkyZMAlCtX7nq6KTRKpkSKluPnL9Lho9WkplsZVe8ij58bj3HhMGBAy+HQ7lVwcXN2mCIiInIDcso+U1arlbFjx+Ln50eFChWoUKEC/v7+vPnmm1it1rx0KSKSJ+VLevLRAw0AGP+PJ1/X/QYa9QdssO5j+LI9nN3v1BhFRESkaMpTMvXKK68wadIk/u///o9t27axbds2xo0bx8SJE3nttdfyO0YRkavqVq80o7rYpxePWRrOooqjoPcsKFYCIv6BKa1h41QVpxAREZF8ladpfmXKlGHy5Mncfffdmc7/8ssvPPXUU5w6dSrfAsxvmuYnUjTZbDZe+2UXM/86jruLidmDbyOsRArMfwoOr7A3qtoJ7pkE3qWcG6yIiIjcEJwyze/ChQtZFpmoUaMGFy5cyEuXIiLXxTAM3uhemztqlCIl3crgbzYTnuoDfX6Ezu+A2R0OLoHPmsOueRqlEhERkeuWp2Sqfv36TJo06YrzkyZNol69etcdlIhIXriYTUx8qCF1yvpyITGVAdM3EZ2UDrc9CY+vgqA6cPGcvXz6dw9C7ElnhywiIiI3sTxN81u9ejXdunWjfPnyjj2mNmzYwIkTJ1i4cCGtWrXK90Dzi6b5iRR9UXHJ3PvZek7FJNG4QnFmDmqGh6sZ0lNgzYew5gOwpoGbN7QfDU0Ggcns7LAL1OJdEbyzeN+lZNPP2eGIiIjcEJwyza9NmzYcOHCAe++9l5iYGGJiYujZsye7d+/m22+/zUuXIiL5ppSvB9MHNsHHw4XN4dE8P3cHVqsNXNyh3Sh4ci2E3AapCbDof/DVnRC529lhF6jPVx/m6LlEvtt43NmhiIiIFBnXvc/Uv+3YsYNGjRphsVjyq8t8p5EpkVvH+kPn6D99I2kWG0+2qcxLXf611tNqhS3TYfkbkBIHJhdo+Qy0/h+4ejgt5oJwNj6FJm8vB6BGsA+Ln9VmxiIiIuCkkSkRkZtBiyoB/F9P+zrOyasPM+vv8MsXTSZo8hgM/Rtq3AXWdPv0v89bwNE1Toq4YKzaH+X4en9kPLFJaU6MRkREpOhQMiUiRVqvsHI816EaAK/N38XKfVGZG/iWgQdnQe+Z4B0MFw7D13fBL8PgYtGoTrryX8mUzQbbjkc7MRoREZGiQ8mUiBR5w9tX4b6wclhtMHT2VvacjruyUc3uMGwjNH7U/nnbt/DZbbD398INNp+lWaysOXAOgKqlvAHYEq5kSkREJD+45KZxz549r3o9JibmemIRESkQhmEwvmddImKTWXvoHE/O3MJvw27Hz9M1c0MPP7jrI6j7APw2HM4dgDl9oHZP6PoeeAU45wWuw6ZjF4hPSaeklxv9W4Ty6vxdbD6mZEpERCQ/5Gpkys/P76pHhQoV6NevX0HFKiKSZ65mE5Mebki54sU4fuEiz87ZZq/wl5UKzeGJNXD7c2CYYfc8+LTZTbnZb8a0xjbVA2lasQQA20/EkG6xOjMsERGRIiFXI1PTp08vqDhERAqcv6cbk/uG0evz9azcf5ZP/jjIs5fWU13B1QM6vAE177avn4rabd/sd9dP0O1D8Akq1NjzasWlZOqOGqWoEuiNr4cLccnp7D0TT91y2m9KRETkemjNlIjcUuqU9ePte+sC8PGKg1cWpPivso3g8VXQ5kV7+fR9v8NnzWDHnBt+lCr8fCJHzibiYjJoVTUQk8mgUYXiAGwOLxrFNURERJxJyZSI3HLuCytH39vKY7PBM99vI/x84tVvcHGDdi/bk6rgepAUDT8/Dt89yJ79+5iw/ABRccmFEntu/HEpUWwcWhy/Yvb1YY0dyZTWTYmIiFwvJVMicksafVdtGpb3Jy45nSdnbiUpNQebjQfXhcF/wB2vYjO7wYHFlJvdjlMrp9J5wp8s3R1R8IHnwh//muKXIayCfd3UlmPR5OOe7SIiIrckJVMicktyczHxeZ8wArzd2Hsmjpd/3pmz5MLsSmKz5xgXMoXt1sr4Ghd5z/ULJqW9zv/N/I2Xf97JxdT0gn+Ba0hMSefvI/apfP9OphqE+ONiMoiIS+ZUTJKzwhMRESkSlEyJyC0r2M+DSQ83wmwy+HnbKb7ZEH7New5GxnP3pLVM3edO7/QxbKzyLDaXYrQw72GR20uU2vIh937yBztPxhbCG2Rv3aFzpFqshJQoRuVAb8f5Ym5mapfxBbTflIiIyPVSMiUit7TbKpVkVJcaALz5+x42H8u+MMMv209xz6frOHw2kSBfd2Y93pKmfcdgDP0LqnTA3UjnWZd5fBY3nHc+/4LPVx3Gkl359QKWMcWvfY0gDMPIdC1jqp/2mxIREbk+SqZE5Jb32O0VuateadKtNp6atZWo+MzFJFLSLYz+ZRfPfL+di6kWWlQuyYLhrWgcak9KKB4KfX6E+6Zj9SpFZdMZZrq+RakVz/DklMWcLuTpdDabjZX77clUu39N8csQpiIUIiIi+ULJlIjc8gzD4J1e9agW5E1UfArDZm0j7dKmtqdiknhgyl+OKYDD2lXh28eaEeDt/t9OoE5PTE9vxtZ4EDYMepnX8G7EICZPeIMFO04X2vvsPh1HZFwKxVzNNLu0Ue+/NQ61J1P7I+KIT04rtLhERESKGiVTIiKAl7sLk/uG4e3uwsZjFxi3cC+rD5zlrk/WsONEDH7FXJk2oDEjO1XHbDKy78jDD+OuDzAGLSelZC2KGwmMZTIBP93LuzN/ISGl4ItTZOyd1bJKAB6u5iuuB/l6UK54Maw22H4ipsDjERERKaqUTImIXFIp0JsPHqgPwPR1xxgwfSPRF9OoU9aX35++nTtqBOW8s3KNcX/qTywdxpJm8qCZaR/PHhzIbx8OITEhroDewO6P/VeWRP8vx35TWjclIiKSZ0qmRET+pVPtYJ5qWxkAmw0eblaeH59sQUgJz9x3ZnbFfPszuA7fRHS5O3AzLDyU8gPJExpj2/ub/QH57HxCimO06WrJVNil9V6q6CciIpJ3Ls4OQETkRvP8ndUJ9HGnrH8x7qwdfP0d+pen+GPzOLj6ezxXvkrZ9EiY0xeqdIAu70LJytf/jEtW7T+LzQa1SvsS7OeRbbuMkaltx6NJt1hxMet3ayIiIrmlfz1FRP7DbDIY2LJi/iRSGQyDqm0fYmm7X5mY3oNUmwscWg6f3QYr3oTUi/nymJxM8QOoFuSDj7sLiakW9kXE58uzRUREbjVKpkRECtGANrXYV+sZ7kx9hw1GA7Ckwpr34dOmcJ1T/9IsVv48cBbIuiT6v5lNBg0vjU5pqp+IiEjeKJkSESlEhmHwbq96uARW5aGkF/ig+GvY/MpB7An71L+ZveD84Tz1vSU8mvjkdEp4udEgxP+a7cPKa78pERGR66FkSkSkkGWUYfdyc2HimZq8X2UmtBoJZjc4vOLS1L+xkJqYq34zSqK3rRZ49fLtl2TsN7Xl2IXcv4SIiIgomRIRcYYqpbx57357GfZP151mcdAgeOovqNz+0tS/D+DTZrDn1xxP/VtxKZm61hS/DA1C/DGbDE7HJnM6JilvLyIiInILuyGSqU8//ZTQ0FA8PDxo1qwZGzduzNF933//PYZh0KNHj4INUESkAHStW5rBrSoCMHLuPxy2BkHfn6D3TPALsU/9++ERmNkTzh28al8nLlzkUFQCZpNB62qBOXq+l7sLNUv7AFo3JSIikhdOT6bmzJnDiBEjeP3119m6dSv169enU6dOREVFXfW+Y8eOMXLkSFq1alVIkYqI5L8XO9egacUSJKSk8+S3W0hMtUDN7jB0I7R+4dLUvz/gs+aw7HVISciynz8ujUqFVSiOXzHXHD+/cQXtNyUiIpJXTk+mPvzwQwYPHszAgQOpVasWkydPxtPTk2nTpmV7j8VioU+fPowZM4ZKlSoVYrQiIvnLxWxi0sMNKeXjzsGoBF6atxObzQZunnDHq/apf1XvBGsarJtgr/q3a94VU/8ykqn2OZzilyGsQkYRCq2bEhERyS2nJlOpqals2bKFDh06OM6ZTCY6dOjAhg0bsr1v7NixlCpViscee+yaz0hJSSEuLi7TISJyIynl48FnfRrhYjL4bcdpZqw/dvliycrw8A/w4HfgXx7iTsGPA+Gbe+DsfgAupqaz4ch54Nr7S/1XRhGKvWfiSUxJz5f3ERERuVU4NZk6d+4cFouFoKCgTOeDgoKIiIjI8p61a9fy1VdfMXXq1Bw9Y/z48fj5+TmOkJCQ645bRCS/NQ4twctdawLw9oK9bP53hT3DgBpd7VP/2rwEZnc4uho+bwFLX+XvveGkplspV7wYVUp55+q5pf2KUda/GBarje0nYvLxjURERIo+p0/zy434+HgeeeQRpk6dSkBAQI7uGTVqFLGxsY7jxIkTBRyliEjeDGwZyl31SpNutfHUrK1sOnbBPuUvg2sxaDcKhv4N1buCNR3WT6TR751ob9rCHTVKYRjXLon+X40ypvod07opERGR3HBx5sMDAgIwm81ERkZmOh8ZGUlwcPAV7Q8fPsyxY8fo3r2745zVagXAxcWF/fv3U7ly5Uz3uLu74+7uXgDRi4jkL8MweKdXPfZHxHMwKoH7J2+gVmlfBrQI5e4GZfBwNdsblqgID30HB5ZiW/QCftHH+MrtAyLP74OECeCdy6l+FYrz247TWjclIiKSS04dmXJzcyMsLIwVK1Y4zlmtVlasWEHz5s2vaF+jRg127tzJ9u3bHcfdd99Nu3bt2L59u6bwichNz8vdhW8fa0bvxiG4u5jYcyaO//30D7eNX8H4hXs5ceHi5cbV7mTfvUuZnN6ddJuJoOMLYFIT2DYrx3tTweUiFNuOx2Cx5vw+ERGRW51TR6YARowYQf/+/WncuDFNmzZlwoQJJCYmMnDgQAD69etH2bJlGT9+PB4eHtSpUyfT/f7+/gBXnBcRuVkF+3nwzn31eKlLDX7YfIJv/wrnZHQSU/48whdrjtC+RhD9W1Tg9ioB/HE4nvfSHyKqfFdGWz+HiH/gl6dg5w9w1wT7KNY11Aj2wcvNTEJKOgci46lZ2rfgX1JERKQIcHoy1bt3b86ePcvo0aOJiIigQYMGLF682FGU4vjx45hMN9XSLhGRfFHcy40n2lRmUKtKrNwXxdcbjrHm4DmW741k+d5IKgV6kZpun+pcuX5LaPwAbJgEq8bDkVX2vanueAWaDQFz9n/du5hNNCxfnLWHzrE5PFrJlIiISA4ZNlsu5oIUAXFxcfj5+REbG4uvr35gEJGby6GoBGb+Fc6PW06S8K9S5utfuoMy/sXsH84fht+egWNr7J/LNIS7J0Jw3Wz7/WjZAT5ecZAeDcow4cGGBfkKIiIiN4zrzQ005CMichOpUsqbN+6uzV8vt+fNe2pTP8Sffs0rXE6kwL43Vf/foPsn4O4Hp7fBF21h+RhIS8qy34z9pjaHq6KfiIhITmlkSkSkKIuPgIUvwN5f7Z/9K0CXd6B6l8zNktOoP2YpVhv8/XJ7gnw9nBCsiIhI4dLIlIiIZM8nGHp/C71ngm9ZiAmH7x6EWQ/AhSOXm3m4Uj3Y/o+I9psSERHJGSVTIiK3gprdYehGaPksmFzh4BL49Db4421ItZdbb5yxea/2mxIREckRJVMiIrcKd2/oOAaGrIdKbcGSAn++C581g30LaFzBH4AtWjclIiKSI0qmRERuNYHV4JH5cP/Xl6b+HYfvH+bOHcOpYESw+3QcF1PTr9mNiIjIrU7JlIjIrcgwoHYP+9S/258DkyvFjq1gmfv/GG76gZ1HI5wdoYiIyA1PyZSIyK3M3Rs6vAFPbYBK7XAjnWdcfqbmvPaw6ye4tQq+ioiI5IqSKRERgYCq8MjP/FHvfU7ZSuKbEgE/PgrTOsOprc6OTkRE5IakZEpEROwMg8CmD9A+5X0+TLuPZNzhxF8wtR38PATizjg7QhERkRuKkikREXGoVcaXdnUqMMnak7bJ7/OT5Xb7hR2zSZvQgMjf3sR2qZS6iIjIrc6w2W6tCfHXu8uxiMit4FxCCsv3RLJ4dwTxh//iZdM3hJkOAhBBIOsqPk1Iq76EhZbAbDKcHK2IiEjeXG9uoGRKRESuKi45jZV7Izn313d0ificMsZ5ADZbqzHJ7TGG9+tNo/LFnRyliIhI7imZyiUlUyIieZd8MZ4TC96j/J4puNuSAVjt0pIWg97HNbiWk6MTERHJHSVTuaRkSkQkH8SdJnXpG7jtmgOADQOj7n3Q5iUIqOLk4ERERHLmenMDFaAQEZHc8y2D231f8HvLH1lkaYKBDXbOhU+b2Cv/XTjq7AhFREQKnJIpERHJs853tGdCidF0SxnHfr/bwWaFHbNhUmP49WmIOe7sEEVERAqMkikREckzF7OJ0d1rsdsWStezQzne8zeo0gGs6bD1G/ikEfw+AmJPOTtUERGRfKdkSkRErkvLKgF0rBWExWrjtc0e0PcneHQJVGwN1jTY/BV80hAW/g/iTjs7XBERkXyjZEpERK7by11r4mo2WH3gLCv3RUH526D/b9D/dyjfHCwpsHEKfNwAFozUSJWIiBQJSqZEROS6VQzwYmDLigC8uWAPaRbrpQutYOAieGT+5aRq01T4pIF9+l/MCafFfL1S0i3ODkFERJxMyZSIiOSLYXdUoaSXG0fOJvLthvDLFwwDKrezJ1X9foUKLcGSenn632/PQHR49h3fgCb9cZDao5cw+28V2BARuZUpmRIRkXzh6+HK83dWB2DC8gNcSEzN3MAwoFIbGLgQBiyA0Fb2NVVbZsDERvDLsBu+pLrNZuPDpft5f+kB0q02Fu+OcHZIIiLiREqmREQk3/RuEkKNYB/iktP5aNmB7BuG3g4DfrePVlVqa6/+t+1bmBgG84fC+cOFFnNO2Ww23l2yn0/+OOQ4t+d0LDabzYlRiYiIMymZEhGRfGM2GYzuXguAWX+Hsz8i/uo3VGgB/X6BR5dC5fZgs8D2mTCpCfz8JJw7dPX7C4nNZmPcwr18vsqe5P2vc3VMBpxLSCUqPsXJ0YmIiLMomRIRkXzVonIAnWoHYbXBWwv25GzkpnwzeGQeDFoBVe+0J1U7voNPm8BPg+Ds/oIPPBs2m42xv+9h6hr7FMSx99TmqbZVqBzoDcDu07FOi01ERJxLyZSIiOS7l7vWxM1sYs3Bc6zYG5XzG8s1hj5zYfBKqNYFbFbYORc+bQZzB0LknlzHYrHa2Ho8muS03Fffs1ptjP5lN9PXHQNg3L116dc8FIDaZXwB2H0qLtf9iohI0aBkSkRE8l2Fkl4MvD0UgLcX7iU13Zq7Dso2goe/hyf+hBp3ATbYPQ8+bw4/9IOIXTnqJiElnYEzNtHzs/XcNn4F/7doH6diknJ0r9Vq45X5O/n2r3AMA97tVY+Hm5V3XK9dxg+A3aeVTImI3KqUTImISIEY1q4KAd7uHD2XyDcbjuWtk9L14cFZ8ORaqHWP/dyeX2ByS/i+D5zenu2tUXHJ9J6ygT8PnAUg5mIak1cfptU7fzBk5hb+OnI+2ymIFquNF3/6h+82nsBkwPv31eeBJiGZ2jhGps5omp+IyK1KyZSIiBQIHw9XXuhUDYCPVxzkfMJ1FGoIrgsPfANDNkDtnoAB+36HL9rAjLtg/2KwXh79OhQVz72frWf36ThKerkx76kWfPFIGC0ql8Rqg0W7Injwi7/o8vEavt94nKTUy1MALVYbL8zdwdwtJzEZ8FHvBvQKK3dFSLUuJVMnLiQRm5SW93cTEZGblmG7xWq6xsXF4efnR2xsLL6+vs4OR0SkSLNYbXSfuJY9Z+J4uFl5xt1bN386jtoHaz6AXT/Zi1UAlKwKzZ9ii38nHp21m9ikNCoGeDFjYBMqlPRy3Lo/Ip6vNxxj3taTJKfZEzB/T1cebFKeh5uW5/2l+/l1x2nMJoNPHmxIt3qlsw2j5f/9wamYJL4bfBvNK5fMn3cTEZFCc725gZIpEREpUH8fOU/vL/7CMGDO481pWrFE/nUeexL+ngJbvoYU+3S7aJsP31rasy3oPj54tBMlvNyyvvViGj9sPsHXG45xMjrzOioXk8GkhxvSuU72iRTA499sZumeSF7tVpNBrSrlzzuJiEihud7cQNP8RESkQDWrVJL7w8phs8GIH7YTn5yPU+L8ysGdb8KI3fxV7QVO2AIpbsQz3GU+02IepcSy5yByd9a3eroyuHUlVr/Qji8eCaNlFfvIkqvZ4PO+YddMpOByEYo9KkIhInJLcnF2ACIiUvSN7l6LDUfOczI6iTd/38O799XPt76tVhvjlp3gy38aYqYeb9cIp3f6rxgnN9o3AN4+EyrfAS2GQ6W2YBiZ7jebDO6sHcydtYM5cjYBk2EQGuCV9cP+w1GEQsmUiMgtSSNTIiJS4Hw8XPng/voYBvyw+SRLd0fkS7/JaRae/n4bX661b6g7snNtevcfhjFoGTy2DGr1AMMEh/+Ab3vA1Hb2aoDWrEu1Vwr0znEiBVC7rD2ZOnQ2IU/7WImIyM1NyZSIiBSKZpVK8nhr+7qiUfN2cjb+Oqr7YV/z1G/aRhb8cwZXs8GE3g0Y0rYyRsbIU0hTeOBrGL4Nmj4BLsXg9Db7PlWfNoWt30J66nXFEOzrQQkvNyxWG/sj4q+rLxERufkomRIRkUIzomM1agT7cD4xlVHz/sl2n6drORObxH2T17Px6AV83F34emBTejQsm3Xj4qHQ9V14bhe0fgE8/OD8Qfh1GHxcHzZ8CikJeYrDMAxN9RMRuYUpmRIRkULj7mLmo94NcDObWL43ih82n8h1H4eiEuj12XoORiUQ7OvB3CHNaVEl4No3egXAHa/Cc7uh45vgHQzxp2HJyzChDqwcDxcv5DqeWo5kSpv3iojcapRMiYhIoapZ2pfn77Rv5jv2tz0cP38xx/fuOBHD/ZPXczo2mUqBXvz0VAtqBOeylK27D7QcDs/+A90/gRKVICkaVv8ffFQbFr0EMcdz3F1GRT+NTImI3HqUTImISKEb1KoSTSuWIDHVwogftmOxXnu635qDZ3lo6l9EX0yjfjk/fnyyBWX9i+U9CBd3COsPwzbD/TMguB6kXYS/P4ePG8CPj8GZHdfsJmOa376IuBy9h4iIFB1KpkREpNCZTQYf3F8fb3cXNodHM+XPw1dt//s/p3l0xiYuplq4vUoAswbflu1mvLlmMkPte+GJP6HvPHv5dJsFdv0IU1rD13fDweWQzfquiiW98HQzk5xm5cjZvK29EhGRm5OSKRERcYqQEp683r0WAB8tO5DtmqNv/wrn6e+2kWax0a1eab4a0Bhv9wLYJtEwoEp76PeLPbGqez8YZji6Gmb1gs9bwPbZV1QANJkMapZWEQoRkVuRkikREXGa+8LK0al2EGkWG8/N2Z5pryabzcaE5Qd4bf4ubDboe1t5PnmwIe4u5oIPrHR96PUlPLMDbhsKbt4QtQfmD7FXAFz3MSRfTv5qqwiFiMgtScmUiIg4jWEYjLu3LgHe7hyITOCDpfsBsFptvP7rbiYsPwjAM+2r8uY9dTCbjMIN0D8EOo+zVwDs8MblCoDLRsOHteG3ZyB8A7VL+wAamRIRudUYtrxu8nGTiouLw8/Pj9jYWHx9c1kBSkRECsSKvZE89vVmDAO+HtiUHzaf4Pd/zmAYMObu2vRrHursEO3SU2DnXFg/Ec7uc5xO9SnP59GNWebSlt9e73d542AREbmhXW9uoGRKRERuCKPm/cN3G09gGPZaD65mgw8eaMDd9cs4O7QrWa1wbA38Mwf2/AKplwtPpJRujHujh6B2T/As4cQgRUTkWq43N7ghpvl9+umnhIaG4uHhQbNmzdi4cWO2befNm0fjxo3x9/fHy8uLBg0a8O233xZitCIiUhBe7VaL8iU8sdnA083MV/2b3JiJFIDJBJXaQI/PYOQB6Pklm10aYbEZuJ/ZDAueh/erwfd9YO9v9hEtEREpcpw+MjVnzhz69evH5MmTadasGRMmTGDu3Lns37+fUqVKXdF+1apVREdHU6NGDdzc3Pj99995/vnnWbBgAZ06dbrm8zQyJSJy4zoQGc9Xa47S57by1Cvn7+xwcmXk3B2s3rKT92scpE3yCojYefmiux9U7ww174bKd4Cbp/MCFRERh5t+ml+zZs1o0qQJkyZNAsBqtRISEsLTTz/NSy+9lKM+GjVqRLdu3XjzzTev2VbJlIiIFITp644y5rc9dKgZxJf9G0PkbtjxvX2NVfyZyw1dPaFqR3tiVfVO8NC/RSIiznJTT/NLTU1ly5YtdOjQwXHOZDLRoUMHNmzYcM37bTYbK1asYP/+/bRu3TrLNikpKcTFxWU6RERE8lvtMn4A7Mkojx5UG+58014JcOBie4l1vxBIu2hfZ/XTY/BeZZj1AGz9FhLPOzF6ERHJiwLY9TDnzp07h8ViISgoKNP5oKAg9u3bl81dEBsbS9myZUlJScFsNvPZZ5/RsWPHLNuOHz+eMWPG5GvcIiIi/1XzUnn007HJRCemUtzLzX7BZIYKze1Hp7fhzHb7Oqo9v8L5g3Bwif0wTFChJYQNgFr3gNnVae8iIiI5c0MUoMgtHx8ftm/fzqZNm3j77bcZMWIEq1atyrLtqFGjiI2NdRwnTpwo3GBFROSW4OPhSmhJ+1qobPebMgwo0xDaj4Zhm+Cpv6HdKxBcF2yXKgT+9Jh9Y+C1EyApuvBeQEREcs2pI1MBAQGYzWYiIyMznY+MjCQ4ODjb+0wmE1WqVAGgQYMG7N27l/Hjx9O2bdsr2rq7u+Pu7p6vcYuIiGSldhk/jp2/yO7TsdxeNeDqjQ0DStWwH23+x9K1f7Fr0VSe8PwDr7hTsPx1WP0uNOwDzZ6EkpUL5yVERCTHnDoy5ebmRlhYGCtWrHCcs1qtrFixgubNm+e4H6vVSkqKys6KiIhz1SpjX7yc7chUNqxWG+/8ncwnlp60SZtE2l2ToFRtSEuEjV/AxDB7mfXw9fZNuERE5Ibg1JEpgBEjRtC/f38aN25M06ZNmTBhAomJiQwcOBCAfv36UbZsWcaPHw/Y10A1btyYypUrk5KSwsKFC/n222/5/PPPnfkaIiIi1HYkU7G5uu/Pg2c5fDYRgHPJsNDlDu4Z0heOroYNn8LBpbDvd/tRugE0Hwa1e2hdlYiIkzk9merduzdnz55l9OjRRERE0KBBAxYvXuwoSnH8+HFMpssDaImJiTz11FOcPHmSYsWKUaNGDWbOnEnv3r2d9QoiIiLA5Yp+R84lcjE1HU+3nP0zO23dMQD8PV2JuZjGD5tPcE+DslCprf04ux/++hx2fGcvYDFvECx7DRo/Co36g0/QVXoXEZGC4vR9pgqb9pkSEZGC1PTt5UTFp/DTkBaEVSh+zfYHI+Pp+NGfmAyYOagZfb78G5sN1vyvHSEl/rO5b+J52DINNk6FhEvrjU2u9up/TR+HkKb2tVgiIpIjN/U+UyIiIkVNxlS/PTmc6jd9/TEAOtYKokXlAG6vYi9c8cPmLKrPepWE1i/Aszuh55cQ0gysabDrR5h2J0xpDVu/gdSL+fIuIiJydUqmRERE8lFuilBEJ6Yyb+tJAB5tWRGABxqHADB380ks1mwmj7i4Q7374bGl8PhqaNgXXDwg4h/49Wn4sCYsfRUuHM2HNxIRkewomRIREclHGeumcpJMfbfpOMlpVmqV9qVpxRIA3Fk7CH9PVyLikvnzwNlrP7BMA7jnUxixFzq+Cf4VIDkG1k+ETxrCrAdg54+QFJP3lxIRkSwpmRIREclHGdP89kfEk2axZtsuzWLlm/XhADx6e0WMS2ud3F3M3NuwLABzNuVio3nPEtByOAzfBg/NgcrtARscXGLfCPi9yvD13fD3FIgOz9vLiYhIJkqmRERE8lFIcU983F1ItVg5FJWQbbtFuyKIiEsmwNuN7vVLZ7rWu4l9qt/yvZGcS8jlPoomM1TvDI/Mg2Fb4PbnIKA6WNPtpdYX/Q8+rgeft4Q/3oJTW8CafdInIiLZUzIlIiKSj0wmg5o5WDc1ba19PVPf2yrg7mLOdK1GsC/1Q/xJt9oca6ryJKAKdHgDhm2Ep7fCnW9DhZZgmCByF/z5Hky9Az6qBb89CweWQFpS3p8nInKLUTIlIiKSz661ee/W49FsPxGDm9lEn2YVsmzz4KXRqTmbTpAvu5iUrAwthsHAhfDCYbh3ir2kups3xJ+BLdNh9gPwTkWY3Rs2T4PYU9f/XBGRIszpm/aKiIgUNdcqQjH90ia9dzcoQ6CPe5Zt7qpXmrG/7eHw2US2hEfTOLRE/gXoWQLqP2g/0lPg6BrYv8A+MhV3Cg4sth8AQXWh2p1QrTOUDbNPIxQREUDJlIiISL7LGJnaezoOq9WGyXR5I90zsUks3HkGgIEtQ7Ptw8fDlW71SvPjlpPM2XQif5Opf3Nxh6od7IfNBpG7LyVTS+DkJojcaT/WfACeJaFKR3tyVaUDePgVTEwiIjcJTfMTERHJZ1VKeePmYiI+JZ0T0Zk30P1mQzgWq43bKpVwjGBlJ2Oq3+//nCE+Oa3A4nUwDAiuA61HwqBl8MIh+3TA2j3B3Q8unv//9u47Oqpqf//4e1ImvRLSA6GHAAkldEEF1AsWEEVULoIdxcJVf5ZbLN+rgliuggi2K/aCCioXQWpQeiD0FiCQQDohldSZ8/tjIBBpSUjIAM9rrbNmcupO9hqdh73P58Dmb+D7e2ByK/h8uG06YGFGw7dNRMQOKUyJiIjUM2dHB9oFeQHVp/qVlFv4ak0KcOIhvWfTrbkfLZt6UFJhYe7m9IZp7Nl4BNimAo74BJ7eC2PmQp9HoUlrsFbA3sUw92/wZjv4aBD88Tbk7Lnw7RQRaSQKUyIiIg3gdEUofkw8SH5JBc383RnYPuic5zCZTNUKUTQqR2do0Q+ufRkeXQ/j18HAFyAszrb94DpY9AK82w2m9YTF/2cru14fxTNEROyU7pkSERFpAB3+VB7dajWqyqGP7ROJ40n3UZ3N8K7hTJ6/i42peezKKKRdsFfDNLi2mraFpk9AvyegIA12zYOd/4Pk5ZC907b8/iZ4hUK7wRA1BCL72e7REhG5RGhkSkREpAFE/6mi3+97ctibXYynixMj4sJrfJ4ATxcGHRvFavTRqTPxDoXu98Ho2bay68M/guhh4OwBhWmQ8DF8cYvtPqvvxsDm7+BobmO3WkTkvGlkSkREpAG0D/HCZILswjKyCkurRqVui4vAy9W5Vuca2T2C+dsy+DHxIM8MbnfKQ37tipsvxIywLRWltpGqXfNg169QlAHb59gWkyM07wPththGrvzPfQ+ZiIi9UZgSERFpAO5mJ1oGeLA3u5ifN6YRvzsbk8k2xa+2+rdtSrC3KxkFpSzcnskNMaH13+BzKCqrJDHlCAn7j7A9vYDbu0ec+74vZ9djz6i6Fq5/C9ITYeexYJW1Dfb/blsWPAeB0bZnWbUbrOdZichFw2TUy2PVLx4FBQX4+PiQn5+Pt7d3YzdHREQuYY99ncjPm9JwNztytNzCtdFBfHBXXJ3O9eZvu5i6ZA/92gTw+b0967mlp8rILyXhQC4J+4+wbn8uO9ILsJ70jcHZ0cR/x3anX5umdbtAbrLteVY7/wcHVoJhObHNvQm0Ofag4FYDwFX/vxaRhnG+2UBhSkREpIG8H7+Xib/urPr5mwd60atlkzqdK+XwUfq/vhSTCX5/+mrC/dzrq5mALTwt2pHJ+gO28HTwSMkp+0T4uxHX3J/c4nLid2fjbnbkq/t70TnC9/wuXnIEkhbawlXSIig7UQERB2eI7GsLVm2vA/+W53ctEZGTnG820DQ/ERGRBnLyQ3mjQ7zp2cK/zudq1sSdvq2bsGLPYWYlHORv17StjyZisRrMXLmfNxbsoqTixOiQgwmiQ72Ja+5PXKQfcc39CfZxBaCs0sK9MxP4Y08Od3+yllnjetM68DyqDLr5QcxttsVSASmrbcFq93w4vAf2LbMt85+FgHa2aYOtr4FmvVQdUEQalUamREREGsiR4nK6/HshAG+MiOXWbjWv4nc6P208xOPfbCTUx5XfnxlQ4/LqZ7Iro5BnftjMxtQ8AGLCfbi6XSBxkX50aeaHp8uZ/821uKySOz9czaaD+YT4uPLDQ30I9XU7r/acVs6eE8Hqz9MBnT2gRX9oPRBaD6pzEYv8kgqyC8toHehZT40WkYuFpvnVksKUiIhcSM/9uIWM/BJmjO523lX4Siss9Hx1MfklFXx6Tw+ubFu3+5XKKi1MW7qX6cv2UGEx8HJx4rkh7bm9ewQOtQhoucXljJixkr3ZxbRq6sGscX3w9zDXqU01UpIHexYdWxZDcVb17f6tbKGqzTXQvC+Yzz0V0jAMbp2xisSUI/z4cN/zn7IoIhcVhalaUpgSEZGL2Ys/b2Pmyv0M6RTMe6O61fr49QeO8OwPm0nKKgLgmugg/j20Y9UUvto6lFfCrdNXkp5fSmyEL1/d1xOPs4xo1RurFTK3nAhWqWvAWnliu6OL7V6rdkOg/Y3gFXza0yTsz+XWGasAuKNHBBOHxzR820XEbihM1ZLClIiIXMy2pxUwZMrvALQP8aZXS396tWxCzxb++LqfeVSouKyS1xfs4tNV+zEMCPA089JNHRnSKRiT6fymC+7JKmTEjFUcOVpBvzYBfDQm7sI/C6s03/ZMq+PhKv/kBxyboFlv6DAM2t8E3iFVWx75agNzN6cD4OXqxLp/DMLVWWXZRS4XClO1pDAlIiIXu5MDwHEmE0QFnz5cxe/O5u8/buFQnq1C363dwvnn9e3PGr5qa2NqHnd+uJqj5RZuiAnhndu7nPc9XXVmGJCzG3YvgB0/w8F1J2002QpXRA8jO+I6ek/bQaXVwMvVicLSSqaP6srgTiFnPLWIXFoUpmpJYUpERC4FWYWlrE3OZfW+w6zel8ueY9P2ThYV7EWQtyvxu7MBCPdzY+LwTnV/NtQ5/J6UzT0z11FhMRjdqzn/N7TDeY961Yu8VFuo2jYHDq6ttinB2pYtPldxtNUNvL666LyeBSYiFx+FqVpSmBIRkUtRdmHZSeHqcNU9UWAbtbqnbwuevLYt7uaGvZ/pl01pPPZNIoYBjw9sU28l3OtN/kHY/jPWbbNx+FOwSrKGsdLoxC0jRuPZ7ipwUXU/kUudwlQtKUyJiMjl4Hi4Ssoq5Op2gcRewCp1n6/az79+2gbYAlW7YC9KKyyUVVopq7BQWmmlrMJKWaWF0mOvVgNu6RpGXGTdn8VVG3MSDzHx2yWM9EhkQug2HFLXACd9JXJwgvAe0OpqaHk1hHYBRz2eU+RSozBVSwpTIiIiDe/tRbt5e1FSrY5xcjDxxohYhnUJa6BWnTBs2go2pubx5DVteXRgGziay6J5s8jaOJ+BLtsJsmRUP8DFB1r0s4WryP4Q0MY25CciF7XzzQb6JxYRERGpd48PbIObsyPztmbg4uiAi7MDLk6Ox14dcHV2xMXJts7V2YGth/JZtCOLCd9uJLOglAf6t2yw+602peaxMTUPs6MDd/RsZlvp7k+na8fQe304fy+GlQ+0IPTwKti31FYlsDQfds61LQDuTWwVApv1hua9ITgGHJ0bpL0iYr8UpkRERKTemUwmHryyFQ9e2apG+1utBq/M28HHfyQz8dedZBSU8q/ro2v1EOGa+nTlfgBuiAkhwNOlan2Qtyt9Wwfwe1IO3yc789jAe6H7vWC1QNpG2LcE9sXbqgMePVw9XDl7QHjciXAV3h3MHvXedhGxL5rmJyIiInbjw+X7eGXeDgCujwnhrdti6/WZVTlFZfSZuIRyi5U54/vS+U/3kv2w/iBPztpEiwAPljx55elHxyrLIH0THFgJKasgZTWU5lXfx+QIITG2UBXeHcK6gX9LTQ0UsTO6Z6qWFKZERETs208bD/HUrE1UWAx6tfTn/dFx+LjVzxS6qYuTeHPhbmIjfPlpfN9TtheXVRL38iJKKiynDVunZbVC9k5IWQkHVtkCVsGhU/dz87eNXoXFHXvtBm41OL+INBjdMyUiIiKXlKGdwwjwdOHBz9ezel8uI99fxcy7exDs43pe562wWPlyTQoAY/s0P+0+Hi5OXNshiJ82pjF7w8GahSkHBwiKti3d77Oty0uB1LVwMME2LTBjM5TkQtJvtuW4Jm1sI1ehXSC0MwR1BLP7ef2eInLhaGRKRERE7NK2tHzGfrKO7MIyQn1c+ezeHrQO9Krz+f63OZ3xX20gwNPMimcHnHH64NJdWdz9yTr8Pcys+ftAnB0d6nzNKpVlkLHVFqwOJdhC1pHkU/czOULTdhDS2RauQjpDcEcwe2CxGhSWVuDrbj7/9ogIoJEpERERuUR1CPXhx4f6MOa/a9mXU8wt01fx8Zi4Oj+L6njhiTt7NDvrfVj9WgcQ4Gkmp6ic35OyGRAVVKfrVePkAuHdbMtxxYfh0HpbwErfaCtyUZwFWdtty6avbPuZHDAC2rK2JIIl+cHcdM0AOsX2AO8w3YMl0sg0MiUiIiJ2Lbe4nHs/XUdiSh4uTg5MuaML13UIrtU5tqcVMGTK7zg5mFjx7ACCvM8+ZfClX7bxyYr93BATwrt3dj2f5tecYUBhuq24RdrGEwGrKOP0+5u9bM+7ahoFTdvaXgPagl8kONRf0Q6RS5lGpkREROSS5u9h5qv7evHIVxtYvDOLcV+s57nBUdzfr+bPojo+KnVdx+BzBimA4V3C+WTFfhZuz6SwtAIv1wvwDCmTCbxDbUu7wVWr0w4m88qHX9Oqci8dHQ/QkkO0cMjEsbwQ0jbYlpM5uhwLWe2gaXsIjLIFLb8W4Fj9q9+SnZl8uDyZ0koLVquBxTCwWsFqGFiO/WwYYLEaWA2DG2JCeXZwVMP/LUQuEgpTIiIiYvfczI68P7ob//ppG1+vTeHVeTvZlVHEKzd3xNX57KMwR4rLmbPRVl1vbJ/IGl2vY5g3rZp6sDe7mF+3ZnBbXMT5/gp1YrUaPPVrJivLYolrfhVdBrRm0CfrMJsqmX17CB2c0yF7t62aYM4uyEmCylLI3GpbTlYVsqIgMIoDjs2Z9GsheyoDsVKz+8JmxO+lZ0t/rm4X2AC/rcjFR2FKRERELgpOjg68enNH2gZ58u+52/lhw0H25RTx/uhuBHqdebTpu4RUyiqtRId4E9fcr0bXMplM3NwljDd+282cxEONFqa+WHOAlXsP4+rswOsjYmkR4MEtXcP5YcNBJiwuYe5jN+ASfVKYtFpslQSzd9kCVvZOyNph+7mypFrIag785gTlzmZKfNtQ7BtFsW87jvq1p8QvCqu7Pw4mE44OJhxMJn7YcJCv1qTwjx+38NsTV+Lpoq+RIrpnSkRERC46vydlM/7LDRSUVhLi48qHd8XRMcznlP0sVoMrX1/KwSMlTL4lhtu61zwUpeYepd/kpZhMsPLZAYT4uNXnr3BO+3OKGfzO75RUWHjxxmjG9m0BQN7Rcga9FU9OUTmPD2zD365pe+6TWa2QdwCyd2Jk7WDt2hV45O+hjUMaLpSf/hjPYAjqYFuCO1HiH8XgL9LZn1fJ2D6RvHhTh3r8bc8u72g5O9IL6dnCHwcHFd2Q+qOH9taSwpSIiMilYV92Efd9lsC+7GJcnR14Y0QsN8SEVtvnt20ZPPD5evzcnVn13MBzTgn8s9tmrGLt/lyeHRzFuCtb1fi4o+WVZOSX0rKpZ62ud5zFanD7B6tYt/8IvVs24cv7elYLEXM3p/HIV4k4O5r432P9aBtU85Lxn6xI5qVftuPsaOK7+3vQxSsfMrcdW7baXk9Xth2wmpzYbQlhtxFOt+5XENauGwRGg0+E7Xlb9ays0sJnKw8wdUkSBaWVjOgWzmu3xChQSb1RAQoRERG5LLVs6snsh/vy2NeJxO/O5pGvEtmdUciEQW2rvmx/umo/ACO7N6t1kAK4uWsYa/fnMifxUI3D1MbUPB7+Yj1p+aU80L8lz/wlCsdafvn/ZEUy6/YfwcPsyORbTw0P13cKYU77NBbtyOTp7zfzw0N9anSNjal5vDpvBwDPDW5Pl8gAIACatILom07sWFZomx54PFwdWxzKCohySCWKVNiwCo7XvjB7QmB7W7AK6mB736QNeAXXqXy7YRjM25LBpPk7SM0tqVo/a/1BvFyd+dcN7WtcfESkIWlkSkRERC5qFqvBxHk7+OgP22jKXzoE8+ZtsaTllXDNf5bjYILlT19NuJ97rc+df7SC7q8sotxiZd5j/YgOPfN3B8Mw+Hz1Af49dzsVlhNfr65u15R37uiCdw0rAu7JKmLIlN8pr7Ty6s2duLNns9Pul5FfyjVvxVNYVsnzN0RzzxUtznrevKPlXD/lDw7llfCXDsFM/2vX2gUSw4D8gxSmbGLmnHlEVCTT1yuLpqUHwFpx+mPMXragFtAGmrS2Lcffmz1Oe8j6A0d45X/b2ZCSB0CglwtPXdsOgKd/2AzA3wa15fFBbWredpEz0MiUiIiIXNYcHUz884Zo2gV78Y/ZW5m/LYP904tpEWD7sj6ofVCdghSAj7szA6ICmb8tgzkbD50xTBWXVfLcj1v4eVMaYAt0A9oH8q85W1m6K5vh763ko7viiAw4fYA4rtJi5clZmyivtNK/bVPu6HHme7yCfVx5dkgU/5i9ldcX7OKa6CAi/E//exqGwVOzNnEor4Rm/u5MHhFT+5Edkwl8I/DyjSDS6MqjXyfinG/if+N70dYp0zZ6lbXdNqKVtcN2j1Z5oe15WekbTz2fVygEtLaNYDVpRbY5gmlb4IudBpU44ebsyAP9W/JA/5Z4HCt2UVRWyf/N3c5/Fu3G282Ju/uePUCKfdqdWcihvJJLoiqkRqZERETkkrH+QC4Pfr6enKITRRW+uq8nfVoH1PmcC7Zl8ODn6wnydmHlswNPmU63J6uQh77YQFJWEY4OJp4bHMW9V7TAZDKx5WA+93+WQEZBKT5uzrw3qit9z9KWaUv38PqCXXi5OvHb3/qfs+iF1Wpw+4erWZucS782AXx2T4/ThqQPlu/l1Xk7MTs68OPDfU5brKM2DMPg/s8SWLQjiy7NfPl+3GmmGVaWQW4yHN4Dh5MgZ8+J90cPn/HcFYYjeS4heIVF4RrU1jay1aQ1+LcC7zDeWbKX/yzaDcAbI2K5tVt4nX6HSouVrMIyQn0vbGGRy93KPTk8+MV6KixWvnuwNzHhvo3aHhWgqCWFKRERkUvbobwS7v80ge3pBbQL8mL+hH7ndX9NWaWFHq8sJr+kgi/u7ckVbU6EoV82pfHMD5s5Wm4h0MuFaaO60j3Sv9rxWQWlPPD5ejam5uHoYOL5G6K5q3fzU9q0M6OAG6f+QYXFqFVI2JddxF/esU0LPN1xCftzGfnBaixWg5eHdeSvvZrX8S9RXXp+Cde8tZyisspq1QZr5Ggulpw9rFq7mh1bEwmxHKKlKYOWjhm4GmVnPs7RBcOvOUkVTfnjsBcHjCBuvKovcV3jbEUwnMw1uvzvSdn83y/bScoqOutUSqlfP244yDM/bKbCYtA90o8PRsfh51GzPmsol0SYmjZtGq+//joZGRnExsYydepUevTocdp9P/zwQz777DO2brU9I6Fbt268+uqrZ9z/zxSmRERELn1HyyuZk5hGvzYBZ5z6Vhv/mL2FL9ekcEvXcN68LdZ2P9O8HcxcuR+A3i2bMOWOLjT1cjnt8aUVFv7+4xZ+TLQ9PPiOHs146aYOmJ1sFfAqLFaGTVvBtrQCBrUP5MO74moVAKcv28tr83fi4+bMoieurGrH4aIyrp/yBxkFpdwYG8qU2zvXa+GGz1cf4F9ztuJuduS3v/Wv8XTKPVlFPP39pqr7oloHevL3IVFc3bYppqKMYyNYe+Dw3mPLHluFQWvlmU9qcrAFKv8W4NcC/CKPvY+0La4+HDhczL/n7mDRjsyqw7xcnVj61FUEeJ6+7+T8GYbB1CV7eGuhbUTx+pgQ3hwRW6eiMPXtog9T3377LXfddRczZsygZ8+evP3228yaNYtdu3YRGHjqPMpRo0bRt29f+vTpg6urK6+99hqzZ89m27ZthIWFnfN6ClMiIiJSWwn7c7l1xio8zI78/OgVPDVrE4nHgsDDV7XiiWva4uR49tLghmHwwfJ9TJq/E8OAHi38mfHXbvh7mPnPwt28szgJX3dnfvtb/7M+hPh0Ki1Whh4LY9fHhDDtzq5YrQZjZ65j+e5sWgZ48POjV9T7g3atVoORx0q4X9WuKZ+M7X7WsFZpsfLRH8m8tXA35ZVWPF2cePov7bizR7Nz/v2wVELBQdvUwdx9WHP3sXlzIi6FKTQ3ZeFuOsuIFlDi5M2e8gAOGIGkEkR4y2hWHfHkj2x3+naJYeJtcXX5E8g5VFis/GP2Fr5LOAjAg1e25JnrouymvP1FH6Z69uxJ9+7deffddwGwWq1ERETw6KOP8uyzz57zeIvFgp+fH++++y533XXXOfdXmBIREZHaMgyD/q8vJTW3BGdHExUWAy9XJ/5zW2cGRQfV6lxLdmby2NcbKSqrJNzPjSeuacvT32+m0mow5Y4u3BQbeu6TnMbWQ/kMnbYCi9Xgw7vi2J1ZyOsLduHi5MCc8X1pH9Iw33v2ZBUx5J3fKbdYeXtkZ4Z1Of0/bu/OLOT/zdrEpoP5APRv25SJwzsRdh73LJVVWrjv0wR+T8qmpWsR/70pgEhTJhzZD0f2Y+QmU5a9D9fyM9+jBWA1TFR6BGFu0tw2uuUbcey1+Yn35vMf4bzcFJZW8PCXG/g9KQcHE7w0tCOj62maaX25qMNUeXk57u7ufP/99wwbNqxq/ZgxY8jLy+Onn3465zkKCwsJDAxk1qxZ3HDDDadsLysro6zsxL9UFBQUEBERoTAlIiIitfLWb7uYsmQPAB1CvZk+qhvNmtTtC3ZSZiH3fZbAgcNHq9YN6RTMtDtrWa78Tyb9upMZ8Xvx9zCTd7QcqwGTb4nhtu5nrgpYH95dksQbv+3Gz902zbDJSVPmKi1W3l++j3cWJVFuseLl6sS/ro9mRFx4vUw5PFpeyeiP17L+wBECPF2YNa43LQI8SEw5wou/bGdTah7ulNLTr4AJXc3EeORiOnKgKnBV5B7A2Sg/53Vw8wfvMPAOAe9QWzVC7z8tLt51eq7WpSg9v4S7P1nHzoxC3JwdeffOLgxsX7t/eLgQLurS6Dk5OVgsFoKCqv9hg4KC2LlzZ43O8cwzzxAaGsqgQYNOu33ixIm89NJL591WERERubzd2bM5C3dk0T3Sj78PaX9e93u0CfJizsN9Gf/VBlbuPUwTDzP/HtrxvMPFhEFtWLAtg+ScYgCGdw1jRFzdqt3VxgP9WzF3czo7Mwr599ztvH17FwB2pBfw/77fxNZDBQAMiArk1Zs7EexTu2mMZ+NuduK/Y7tz+wer2ZFewF8/WkOPFv7MPnZ/mofZkUcHdubuvpG4OJ3aZ3kFpdz61s/4lqXzVE93+jUtgfxUyEuBvFTb+7ICKMm1LZlbztwYZ49jQSsYPINOeg0BryDwDLa9XuKha0d6AXd/so6MglICPF3479i4Rq/a11AadWQqLS2NsLAwVq5cSe/evavWP/3008THx7NmzZqzHj9p0iQmT57MsmXLiImJOe0+GpkSERERe1VhsfK/zenERvhWPRfrfK3Zd5hRH62hdaAnPz7cB3fzhfm3802pedz83gqsBnx4Vxzb0wp4d2kSFRYDb1cnXrixA8O7htVrAYyTZReWcdv7q6qCJMCt3cJ5+rp2BHqfPbx9siKZl37Zjq+7M0ufvOrUCnMleVBwCArSba+Fx14L0k6sK82reWOd3GyhyiMQPJqCRxNwDwCPgGOvf/rZuf7CZ0P7PSmbh77YQFFZJa0DPflkbPd6KQLTUC7baX5vvPEGL7/8MosWLSIuruY3DOqeKREREbnUHcorwc/d+YIFqeNenrudj/5IrrbumuggXhnW8ZyBpj4cyivhgc8S8HRx4rkh7ekc4Vuj4yotVm6Y+gc7MwoZ1bMZr9zcqfYXLz96LGSlQVGm7X1hxrH3GSfelxXU/txmT3DzAzdfcPU98d7Nz7a4nvzeB1y8Trw6Xbgqhd8lpPL3H7dQaTXo2cKfD0bH4ePufMGuXxcXdZgCWwGKHj16MHXqVMBWgKJZs2Y88sgjZyxAMXnyZF555RUWLFhAr169anU9hSkRERGRhnG0vJLr3l5Oaq4tzL14Uwduig1tsNGo+rRm32FGfrAakwl+Hn8FncLP78HGZ1RefCJgFWdDcY7tIcbFOXA059Sfz1YOviYczbZphS5e1UOWixc4u4PZA5zdbO+d3W2FNk557wZOrrZzObnaApqTCzi6gIOtCuN3Cak8/f1mAIZ2DmXyrTGnnVZpby76MPXtt98yZswY3n//fXr06MHbb7/Nd999x86dOwkKCuKuu+4iLCyMiRMnAvDaa6/x/PPP89VXX9G3b9+q83h6euLp6XnO6ylMiYiIiDScfdlFLNiWya3dws/43C179fg3ify0MY0uzXz5YVyfxi/fbRhQmm8LVyV5UHLENp2w5MiJn6utOwKlBbbRr/KiC9NGRzNWRzNHyhwowwk3V1d8PdwwOTiBg+OxxenEYjpp3S0fgbv/ua/RgC7qAhQAI0eOJDs7m+eff56MjAw6d+7M/Pnzq4pSpKSk4OBw4rkD06dPp7y8nFtvvbXaeV544QVefPHFC9l0EREREfmTlk09eeiqc/8Dtz36+5D2LNqeSWJKHj9sOMiIuIatgnhOJtOx6Xy+tT/WarEFqtICKCu0BayyQls4Kyu0LRVHbUv5UagogYriY++PLyW2kbTKUqgsO7aUAieNxVjKcbCU0+R47iw7ttSojec56mYHGn1k6kLTyJSIiIiInMkHy/fy6rydNPEws+Spq/Bxs+97fi44w7CFoGMBa+6GZF6ftxlPRwszbu9AhK+LbXu1xfqnny1gWCB6WKMX17joR6ZEREREROzF2D4t+HZdKnuzi/nPwt28eFOHRm3PnqxCvks4iIfZiQh/NyL83Wnm705TT5fGmYZoMoGjMzg6k1nmzN8X51JgBPPMoCgiOra68O1pZApTIiIiIiLHmJ0ceOmmjvz14zV8tmo/I7tH0D6kcWYzxe/OZvyXtjLjf2Z2ciDcz41m/u5E+LnbgpafO12a+dXrc7zOxDAM/jF7CwWllcSE+3B/vxYNfk17pDAlIiIiInKSK9oEMKRTMPO2ZPDCT9v49sFeF7wi4RerD/DCz9uwWA26NvOlTaAXKblHST1ylPT8UsorrezLLmZfdnG148yODoy7qhUPX9XqvB4sfS4/b0pj0Y4snB1NvH5rLE6ODuc+6BKkMCUiIiIi8if/uD6aJTuzWLs/l583pTG0c9gFua7FajDp1x18+LvteV3Du4YxaXgMZqcTYaXCYiU9r5TUI0dJzT16LGSVkJRZyM6MQqYsTmJ24kFeuqkDA6KC6r2N2YVlvPDzNgAeHdCGdsFe9X6Ni4XClIiIiIjIn4T5uvHI1a1547fdvPK/HQyICsTLtWGLURwtr2TCNxv5bXsmAE9e05ZHBrQ+ZVTM2dGBZk3cadbEvdp6wzCYvzWDl37ZTmpuCffMTODa6CCevzGacL/q+56PF37eSt7RCqJDvHnoqsvvPqmTXZ7jcSIiIiIi53B//5ZENnEnq7CMtxclNei1sgpKGfn+an7bnonZyYF3bu/MowPb1Gp6oclkYnCnEBY/eSUP9m+Jk4OJ37ZnMuiteN5btofySut5t3PelnTmbcnAycHE5FtjcL5Mp/cdd3n/9iIiIiIiZ+Di5MgLN9qq+X38RzIvz92OxVr/TxXamVHAsGkr2HIoHz93Z766r+d5TSv0cHHiuSHtmfd4P3q08Ke0wsrk+bsY/M5yVu7JqfN5c4vLef6nrQA8dFUrOob51PlclwqFKRERERGRM7g6KpAnrmkLwEd/JHPvp+soKK2ot/Mv25XFrdNXkZZfSssAD2Y/3Je4SP96OXfbIC++faAX/xkZS4Cnmb3Zxdz50Roe+zqRrILSWp/vpV+2kVNUTtsgTx4Z0Lpe2nix00N7RURERETOYe7mNJ6atYnSCiutAz35eEwczZt4nNc5P199gBePVezr1dKfGX/thq+7uZ5aXF1+SQVv/baLz1cfwGqAp4sTt3YLZ2jnUDpH+J5zOuHC7Znc/1kCDiaY/XBfYiN8G6SdF9r5ZgOFKRERERGRGthyMJ/7P0sgo6AUX3dn3hvVlT6tAmp9npyiMt5ZlMTnqw8AcEvXcCYO71StYl9D2Xoon3/M2cqm1LyqdZFN3BnWJYxhncOIDDg1IOYfreCa/8STVVjGg1e25LnB7Ru8nReKwlQtKUyJiIiISF1lFZRy/2cJbDqYj5ODiZeGdmBUz+Y1OnZfdhEf/ZHMD+sPUnasGMRT17Zl/NWnVuxrSFarQXxSNj8lHmLBtkxKKixV2zpH+DKscyg3xIYS4Olia+OsTXy//iAtm3ow77F+Dfr8qgtNYaqWFKZERERE5HyUVlh45ofN/LQxDYCxfSL55/Xtz/jg2oT9uXywfB8Ld2Ry/Jt3bLgPEwa15eqowAvV7NMqLqtk4fZMZice4vekbI7X13B0MNGvTQAx4b5MWZyEyQTfj+tNt+b1cz+XvVCYqiWFKRERERE5X4Zh8N6yvby+YBcAV7QOYNqdXfFxtz2LymI1WLg9kw+W72VDSl7VcYPaB3J/v5b0aOF/QUejaiK7sIy5m9OYk3iITQfzq227p28Lnr8xupFa1nAUpmpJYUpERERE6sv8rRk88d1GjpZbaBHgwbt3diExJY+P/0gmOacYALOjA8O7hnFfvxa0DvRq5BbXzL7sIuZsTGPu5jSaeJj59J4euJudGrtZ9U5hqpYUpkRERESkPm1PK+D+zxI4lFdSbb2PmzOjezXnrj7NCfRybaTWydmcbza49OKliIiIiMgFFB3qzZzxfRn3xXrWHzhCuJ8b917RgtviIvBw0dftS5l6V0RERETkPDX1cuGbB3qxK6OQqGCvMxajkEuLwpSIiIiISD1wdnSgY5hPYzdDLiBFZhERERERkTpQmBIREREREakDhSkREREREZE6UJgSERERERGpA4UpERERERGROlCYEhERERERqQOFKRERERERkTpQmBIREREREakDhSkREREREZE6UJgSERERERGpA4UpERERERGROlCYEhERERERqQOFKRERERERkTpQmBIREREREakDp8ZuwIVmGAYABQUFjdwSERERERFpTMczwfGMUFuXXZgqLCwEICIiopFbIiIiIiIi9qCwsBAfH59aH2cy6hrDLlJWq5W0tDS8vLwwmUyN3RwKCgqIiIggNTUVb2/vxm6OnIb6yP6pj+yf+sj+qY/sn/rI/qmPLg4n95OXlxeFhYWEhobi4FD7O6Auu5EpBwcHwsPDG7sZp/D29taHzs6pj+yf+sj+qY/sn/rI/qmP7J/66OJwvJ/qMiJ1nApQiIiIiIiI1IHClIiIiIiISB0oTDUyFxcXXnjhBVxcXBq7KXIG6iP7pz6yf+oj+6c+sn/qI/unPro41Gc/XXYFKEREREREROqDRqZERERERETqQGFKRERERESkDhSmRERERERE6kBhSkREREREpA4UphrRtGnTiIyMxNXVlZ49e7J27drGbtJla/ny5dx4442EhoZiMpmYM2dOte2GYfD8888TEhKCm5sbgwYNIikpqXEae5maOHEi3bt3x8vLi8DAQIYNG8auXbuq7VNaWsr48eNp0qQJnp6e3HLLLWRmZjZSiy8/06dPJyYmpuohiL179+bXX3+t2q7+sT+TJk3CZDIxYcKEqnXqp8b34osvYjKZqi1RUVFV29VH9uHQoUP89a9/pUmTJri5udGpUycSEhKqtuu7Q+OKjIw85XNkMpkYP348UH+fI4WpRvLtt9/yxBNP8MILL7BhwwZiY2O57rrryMrKauymXZaKi4uJjY1l2rRpp90+efJkpkyZwowZM1izZg0eHh5cd911lJaWXuCWXr7i4+MZP348q1evZuHChVRUVHDttddSXFxctc/f/vY3fvnlF2bNmkV8fDxpaWkMHz68EVt9eQkPD2fSpEmsX7+ehIQEBgwYwNChQ9m2bRug/rE369at4/333ycmJqbaevWTfejQoQPp6elVyx9//FG1TX3U+I4cOULfvn1xdnbm119/Zfv27bz55pv4+flV7aPvDo1r3bp11T5DCxcuBGDEiBFAPX6ODGkUPXr0MMaPH1/1s8ViMUJDQ42JEyc2YqvEMAwDMGbPnl31s9VqNYKDg43XX3+9al1eXp7h4uJifP31143QQjEMw8jKyjIAIz4+3jAMW584Ozsbs2bNqtpnx44dBmCsWrWqsZp52fPz8zM++ugj9Y+dKSwsNNq0aWMsXLjQuPLKK43HH3/cMAx9juzFCy+8YMTGxp52m/rIPjzzzDPGFVdcccbt+u5gfx5//HGjVatWhtVqrdfPkUamGkF5eTnr169n0KBBVescHBwYNGgQq1atasSWyekkJyeTkZFRrb98fHzo2bOn+qsR5efnA+Dv7w/A+vXrqaioqNZPUVFRNGvWTP3UCCwWC9988w3FxcX07t1b/WNnxo8fz/XXX1+tP0CfI3uSlJREaGgoLVu2ZNSoUaSkpADqI3vx888/ExcXx4gRIwgMDKRLly58+OGHVdv13cG+lJeX88UXX3DPPfdgMpnq9XOkMNUIcnJysFgsBAUFVVsfFBRERkZGI7VKzuR4n6i/7IfVamXChAn07duXjh07ArZ+MpvN+Pr6VttX/XRhbdmyBU9PT1xcXBg3bhyzZ88mOjpa/WNHvvnmGzZs2MDEiRNP2aZ+sg89e/Zk5syZzJ8/n+nTp5OcnEy/fv0oLCxUH9mJffv2MX36dNq0acOCBQt46KGHeOyxx/j0008BfXewN3PmzCEvL4+xY8cC9fvfOqd6aqOIyAUzfvx4tm7dWu0eArEP7dq1Y+PGjeTn5/P9998zZswY4uPjG7tZckxqaiqPP/44CxcuxNXVtbGbI2cwePDgqvcxMTH07NmT5s2b89133+Hm5taILZPjrFYrcXFxvPrqqwB06dKFrVu3MmPGDMaMGdPIrZM/+/jjjxk8eDChoaH1fm6NTDWCgIAAHB0dT6kYkpmZSXBwcCO1Ss7keJ+ov+zDI488wty5c1m6dCnh4eFV64ODgykvLycvL6/a/uqnC8tsNtO6dWu6devGxIkTiY2N5Z133lH/2In169eTlZVF165dcXJywsnJifj4eKZMmYKTkxNBQUHqJzvk6+tL27Zt2bNnjz5LdiIkJITo6Ohq69q3b181HVPfHezHgQMHWLRoEffdd1/Vuvr8HClMNQKz2Uy3bt1YvHhx1Tqr1crixYvp3bt3I7ZMTqdFixYEBwdX66+CggLWrFmj/rqADMPgkUceYfbs2SxZsoQWLVpU296tWzecnZ2r9dOuXbtISUlRPzUiq9VKWVmZ+sdODBw4kC1btrBx48aqJS4ujlGjRlW9Vz/Zn6KiIvbu3UtISIg+S3aib9++pzyeY/fu3TRv3hzQdwd78sknnxAYGMj1119fta5eP0f1XChDauibb74xXFxcjJkzZxrbt283HnjgAcPX19fIyMho7KZdlgoLC43ExEQjMTHRAIy33nrLSExMNA4cOGAYhmFMmjTJ8PX1NX766Sdj8+bNxtChQ40WLVoYJSUljdzyy8dDDz1k+Pj4GMuWLTPS09OrlqNHj1btM27cOKNZs2bGkiVLjISEBKN3795G7969G7HVl5dnn33WiI+PN5KTk43Nmzcbzz77rGEymYzffvvNMAz1j706uZqfYaif7MGTTz5pLFu2zEhOTjZWrFhhDBo0yAgICDCysrIMw1Af2YO1a9caTk5OxiuvvGIkJSUZX375peHu7m588cUXVfvou0Pjs1gsRrNmzYxnnnnmlG319TlSmGpEU6dONZo1a2aYzWajR48exurVqxu7SZetpUuXGsApy5gxYwzDsJU4/de//mUEBQUZLi4uxsCBA41du3Y1bqMvM6frH8D45JNPqvYpKSkxHn74YcPPz89wd3c3br75ZiM9Pb3xGn2Zueeee4zmzZsbZrPZaNq0qTFw4MCqIGUY6h979ecwpX5qfCNHjjRCQkIMs9lshIWFGSNHjjT27NlTtV19ZB9++eUXo2PHjoaLi4sRFRVlfPDBB9W267tD41uwYIEBnPbvXl+fI5NhGMZ5jJyJiIiIiIhclnTPlIiIiIiISB0oTImIiIiIiNSBwpSIiIiIiEgdKEyJiIiIiIjUgcKUiIiIiIhIHShMiYiIiIiI1IHClIiIiIiISB0oTImIiIiIiNSBwpSIiMhJIiMjefvttxu7GSIichFQmBIRkUYzduxYhg0bBsBVV13FhAkTLti1Z86cia+v7ynr161bxwMPPHDB2iEiIhcvp8ZugIiISH0qLy/HbDbX+fimTZvWY2tERORSppEpERFpdGPHjiU+Pp533nkHk8mEyWRi//79AGzdupXBgwfj6elJUFAQo0ePJicnp+rYq666ikceeYQJEyYQEBDAddddB8Bbb71Fp06d8PDwICIigocffpiioiIAli1bxt13301+fn7V9V588UXg1Gl+KSkpDB06FE9PT7y9vbntttvIzMys2v7iiy/SuXNnPv/8cyIjI/Hx8eH222+nsLCwap/vv/+eTp064ebmRpMmTRg0aBDFxcUN9NcUEZELRWFKREQa3TvvvEPv3r25//77SU9PJz09nYiICPLy8hgwYABdunQhISGB+fPnk5mZyW233Vbt+E8//RSz2cyKFSuYMWMGAA4ODkyZMoVt27bx6aefsmTJEp5++mkA+vTpw9tvv423t3fV9Z566qlT2mW1Whk6dCi5ubnEx8ezcOFC9u3bx8iRI6vtt3fvXubMmcPcuXOZO3cu8fHxTJo0CYD09HTuuOMO7rnnHnbs2MGyZcsYPnw4hmE0xJ9SREQuIE3zExGRRufj44PZbMbd3Z3g4OCq9e+++y5dunTh1VdfrVr33//+l4iICHbv3k3btm0BaNOmDZMnT652zpPvv4qMjOTll19m3LhxvPfee5jNZnx8fDCZTNWu92eLFy9my5YtJCcnExERAcBnn31Ghw4dWLduHd27dwdsoWvmzJl4eXkBMHr0aBYvXswrr7xCeno6lZWVDB8+nObNmwPQqVOn8/hriYiIvdDIlIiI2K1NmzaxdOlSPD09q5aoqCjANhp0XLdu3U45dtGiRQwcOJCwsDC8vLwYPXo0hw8f5ujRozW+/o4dO4iIiKgKUgDR0dH4+vqyY8eOqnWRkZFVQQogJCSErKwsAGJjYxk4cCCdOnVixIgRfPjhhxw5cqTmfwQREbFbClMiImK3ioqKuPHGG9m4cWO1JSkpif79+1ft5+HhUe24/fv3c8MNNxATE8MPP/zA+vXrmTZtGmArUFHfnJ2dq/1sMpmwWq0AODo6snDhQn799Veio6OZOnUq7dq1Izk5ud7bISIiF5bClIiI2AWz2YzFYqm2rmvXrmzbto3IyEhat25dbflzgDrZ+vXrsVqtvPnmm/Tq1Yu2bduSlpZ2zuv9Wfv27UlNTSU1NbVq3fbt28nLyyM6OrrGv5vJZKJv37689NJLJCYmYjabmT17do2PFxER+6QwJSIidiEyMpI1a9awf/9+cnJysFqtjB8/ntzcXO644w7WrVvH3r17WbBgAXffffdZg1Dr1q2pqKhg6tSp7Nu3j88//7yqMMXJ1ysqKmLx4sXk5OScdvrfoEGD6NSpE6NGjWLDhg2sXbuWu+66iyuvvJK4uLga/V5r1qzh1VdfJSEhgZSUFH788Ueys7Np37597f5AIiJidxSmRETELjz11FM4OjoSHR1N06ZNSUlJITQ0lBUrVmCxWLj22mvp1KkTEyZMwNfXFweHM/8vLDY2lrfeeovXXnuNjh078uWXXzJx4sRq+/Tp04dx48YxcuRImjZtekoBC7CNKP3000/4+fnRv39/Bg0aRMuWLfn2229r/Ht5e3uzfPlyhgwZQtu2bfnnP//Jm2++yeDBg2v+xxEREbtkMlSbVUREREREpNY0MiUiIiIiIlIHClMiIiIiIiJ1oDAlIiIiIiJSBwpTIiIiIiIidaAwJSIiIiIiUgcKUyIiIiIiInWgMCUiIiIiIlIHClMiIiIiIiJ1oDAlIiIiIiJSBwpTIiIiIiIidaAwJSIiIiIiUgf/HzVwIcJy51eSAAAAAElFTkSuQmCC",
+ "text/plain": [
+ "